簡易檢索 / 詳目顯示

研究生: 林志賢
CHIN-HSIEN LIN
論文名稱: 3Y氧化鋯薄板之單軸向壓力負載
Uniaxial Compressive Loadings on 3Y-ZrO2 Thin Plates
指導教授: 劉見賢
Chien-hsien Liu
口試委員: 呂森林
none
史建中
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 81
中文關鍵詞: 氧化鋯相變化晶域重排
外文關鍵詞: ZrO2, phase transformation, domain reorientation
相關次數: 點閱:196下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要針對3Y氧化鋯試片進行單軸向壓應力循環負載和潛變實驗,並將每一應力增量下之即時楊氏模數、即時波松比值和即時體積模數與材料的彈性楊氏模數、彈性波松比值和彈性體積模數相互比較,藉此研究分析各種壓應力下所呈現出之韌化機制為何,而實驗試片為骨頭狀外型且可以承受平面應力負載之薄片。
    結果顯示於正方相氧化鋯試片中,存在著誘發顯著相變化的應力門檻。當施加應力高於此門檻時,發生相變化的強度可能會隨著循環次數增加而增加。並且試片在高於應力門檻潛變,潛變後的循環負載誘發相變化的強度會明顯比潛變前的循環負載來的大。此外於加載過程中所誘發出的相變化會在持續加載應力與隨後卸載應力的過程中部份或完全的逆轉回來,倘若僅有部分逆轉,則會在應力解除時完全逆轉回來。


    Specimens of 3Y-ZrO2 are in the form of thin plate to ensure a plane stress loading appearing in the central working area of specimens. They are subjected to cyclic loadings of uniaxial compressive stress which are interleaved with creeping at both the upper and lower limits of a loading cycle. The occurring intensity of various toughening mechanisms at different stress levels is analyzed by comparing the fluctuation of the instantaneous Young’s modulus, instantaneous Poisson’s ratio and instantaneous bulk modulus with elastic moduli.

    Experimental results show that there exists a ‘stress threshold for initiating significant phase transformation’ in 3Y-ZrO2 specimens. After creeping at the upper limit which is beyond the stress threshold, the intensity of phase transformation increases in the ensuing cyclic loadings. This intensity raises as the number of cyclic loading increases. Phase transformation occurring in the loading path is reversed partially or completely in the loading and unloading paths. If partially, the rest will be reversed when the load is released.

    目 錄 中文摘要…………………………………………………………… I 英文摘要…………………………………………………………… II 誌 謝…………………………………………………………… III 目 錄…………………………………………………………… IV 符號索引…………………………………………………………… VI 圖表索引…………………………………………………………… VII 第一章 緒論……………………………………………………… 1 1.1 前言…………………………………………………………… 1 1.2 研究動機與目的……………………………………………… 2 1.3 文獻回顧……………………………………………………… 3 1.3.1 多形體氧化鋯………………………………………… 3 第二章 正方相氧化鋯之韌化機制…………………………………6 2.1 麻田散型相變化……………………………………………… 6 2.2 晶域重排……………………………………………………… 9 第三章 實驗設備………………………………………………… 12 3.1 實驗方法……………………………………………………… 12 3.2 實驗試片製作流程…………………………………………… 13 3.3 實驗儀器……………………………………………………… 19 第四章 實驗步驟與分析方法…………………………………… 22 4.1 應變規量測…………………………………………………… 22 4.2 應變值計算…………………………………………………… 24 4.3 韌化機制分析方法…………………………………………… 25 4.4 實驗流程……………………………………………………… 27 第五章 實驗結果與分析………………………………………… 30 5.1試片A之實驗分析……………………………………………… 31 5.2試片B之實驗分析……………………………………………… 34 5.3試片C之實驗分析……………………………………………… 41 第六章 結論…………………………………………………………76 參考文獻…………………………………………………………… 78 作者簡介…………………………………………………………… 81

    1.唐正平,2000,陶瓷氧化鋯韌化機制之實驗分析,國立台灣科技大學機械工程系碩士學位論文。
    2.林永彬,2003,正方相氧化鋯多晶體壓縮變形行為,國立台灣科技大學機械工程系碩士學位論文。
    3.廖文助,2007,正方相氧化鋯多晶體承受高壓應力之非彈性變形,國立台灣科技大學機械工程系碩士學位論文。
    4.Rodriguez, A. M., Caracoche, M. C., Rivas, P. C., Psquevich, A. F. and Minzer, S. R., ”PAC Characterization of Nontransformable Tetragonal t’ Phase in Arc-melted Zirconia-2.8mol% Yttria Ceramics”, J. Am. Cream. Soc., 84[1], p.188-192, (2001).
    5.Cain, M. G. and Lewis, M. H., “Evidence of Ferroelastic in Y-Tetragonal Zirconia Polycrystals”, Materials Letters, 9[9], p.309-312, (1990).
    6.McMeeking, R. M. and Evans, A. G., “Mechanics of Transformation Toughening in Brittle Materials”, J. Am. Ceram. Soc., 65[5], p.242-246, (1982).
    7.Marshll, D. B., “Strength Characteristics of Transformation -Toughened Zirconia”, J. Am. Ceram. Soc., 69[3], p.173-180, (1986).
    8.Rauchs, G., Fett, T., Munz, D. and Oberacker, R.,“Tetragonal to Monoclinic Phase Transformation in CeO2-Stabilised Zirconia under Uniaxial Loading”, Journal of the European Ceramic Society, [21], p.2229-2241, (2001).
    9.Kelly, P. M. and Francis Rose, L. R.,“The Martensitic Transformation in Ceramics-its Role in Transformation Toughening”,Progress in Materials Science, [47] , p.463-557, (2002).
    10.Butler, E. P., “Transformation-Toughened Ceramics”, Mater. Sci. Tech.,[ 1], p.417-432, (1985).
    11.周玉、雷廷權,陶瓷材料學,中央圖書出版社,1998。
    12.Pan L. S. and Horibe S., “An In-situ Investigation on the Critical Phase Transformation Stress of Tetragonal Zirconia Polycrystalline Ceramics”, J. Mater. Sci., [31], p.6523-6527, (1996).
    13.Zhu, H. Y., “Correlation between Phase Transformation and Surface Texture Induced by Grinding in Tetragonal Zirconia Polycrystals”, Journal of Materials Science Letters, 15[13], p.1126-1128, (1996).
    14.楊宗銘,2005,正方相氧化鋯多晶體承受張力壓力之循環負載,國立台灣科技大學機械工程系碩士學位論文。
    15.Virkar, A. V. and Matsumoto, R. L. k., “Ferroelastic Domain Switching as a Toughening Mechanism in Tetragonal Zirconia”, J. Am. Ceram. Soc., 69[10], p.224-226, (1986).
    16.Srinivasan, G. V., Jue, J. F., Kuo, S. Y. and Virkar, A. V., “Ferroelastic Domain Switching in Ploydomain Tetragonal Zirconia Single Crystals”, J. Am. Ceram. Soc., 72[11], p.2098-2103, (1989).
    17.呂璞石、黃振賢,金屬材料,文京圖書,1986。
    18.Chan, C. J., Lange, F. F. and Ruhle, M., “Ferroelastic Domain Switching in Tetragonal Zirconia Single Crystals Microstructural Aspects”, J. Am. Ceram. Soc., 74[4], p.807-813, (1991).
    19.Kyowa共和電業,應變規使用說明,三聯科技股份有限公司。

    QR CODE