簡易檢索 / 詳目顯示

研究生: 廖亭堯
Ting-Yao Liao
論文名稱: CoCrFeNi與CoCrFeNiAl0.5 高熵合金的低溫相變化研究
The study of low temperature phase transformations in CoCrFeNi and CoCrFeNiAl0.5 high entropy
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 周賢鎧
Shyan-kay Jou
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 122
中文關鍵詞: 高熵合金離相分解有序化相變化B2σ相M23C6L12
外文關鍵詞: high entropy alloys, spinodal decomposition, ordering reaction, B2, σ phase, M23C6, L12
相關次數: 點閱:251下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高熵合金(High-entropy Alloys,HEAs)是使用多種元素混合之合金,每個主元素原子百分比介於5%至35%,而次要元素則小於5%。在元素比例上做適當之調配,可獲得耐腐蝕、耐磨性與高強度等優越性質。本論文延續先前探討成分為CoCrFeNi與CoCrFeNiAl0.5之二種高熵合金,係研究經高溫固溶處理與100小時低溫恆溫處理之相變化過程。經固溶處理後之CoCrFeNi高熵合金,其主要結構為FCC沃斯田體(γ)單相組成,而經長時間之低溫恆溫處理後,於晶界處有富含鉻元素之碳化物產生。經固溶處理後之CoCrFeNiAl0.5高熵合金,其主要結構由FCC沃斯田體(γ)相與、BCC肥粒體(α)相及B2相組成,而經過低溫恆溫處理後,發現σ相析出,並發生spinodal相分離與有序化相變化,高溫沃斯田體(γ)於冷卻過程中,分解為二個低溫沃斯田體(γ’+γ’’),其中含高溶質之γ’’相於更低溫時,再經由有序化反應而相轉變為L12相,觀察發現其晶粒尺寸小於CoCrFeNi高熵合金。總反應式為:γ→γ’+γ’’→γ’+L12。


    HEAs are defined as those alloys containing at least five principal elements, each having the atomic percentage between 5% and 35%. The atomic percentage of each minor element, if any, is less than 5%. These alloys show some unusual features, such as excellent corrosion resistance, wear resistance, high strength, and some of them are yet to be discovered. However, the development of the HEAs requires the knowledge of the phase transformations that occur during the alloy making processes. The present study is a continuation of the previous work. and aims to understand the microstructure and phase transformations of the alloys, Alloy A (CoCrFeNi) and Alloy B (CoCrFeNiAl0.5) after solution treatment for 1 hour and then quenched followed by prolonged annealing for 100 hours isothermally at various temperature. Alloy A shows single phase FCC austenite (γ) after solution treatment in as quenched condition whereas Alloy B shows multiphase consisting of FCC austenite (γ) phase, BCC ferrite (α) phase, and B2 phase after solution treatment in as quenched condition.
    Chromium rich carbides precipitates at the grain boundaries after prolong annealing of 100 hours at various studied temperature for Alloy A. The results of our study show that the spinodal decompositions occur in CoCrFeNiAl0.5 alloys after heating and cooling from 1050°C, the high temperature austenite (γ) decomposes into low temperature solute-lean austenite (γ’) and solute-enriched austenite (γ”). The solute-enriched austenite phase also transforms into L12 phase via the ordering reaction upon cooling to lower temperature. The occurrence of spinodal decomposition and ordering reaction in the austenite phase of the Alloy B can be written as follows:γ→γ’+γ’’→γ’+L12

    第一章 序論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 3 2.1 高熵合金相變化 3 2.2 擴散型相變化(diffusional transformation) 4 2.2.1 Spinodal 相分離 5 2.2.2 析出型相變化 7 2.2.3 有序化相變化 7 2.2.4 B2 相析出 8 2.2.5 σ 相析出 9 2.2.6 L12相析出 9 2.2.7 M23C6碳化物析出 10 2.3 非擴散型相變化(diffusionaless transformation) 11 2.3.1 雙晶相變化 11 第三章 實驗方法 22 3.1 高熵合金熔鑄 22 3.2 鑄錠加工 23 3.3 合金熱處理 24 3.3.1 高溫固溶處理 24 3.3.2 低溫恆溫處理 25 3.4 分析儀器與方法 25 3.4.1 輝光放電分光儀(Glow Discharge Spectrometer) 26 3.4.2 X 光繞射儀 (X-ray Diffractometer) 27 3.4.3 光學顯微鏡(Optical Microscope) 29 3.4.4 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope) 30 3.4.5 穿透式電子顯微鏡(Transmission Electron Microscope) 32 第四章 結果與討論 40 4.1 CoCrFeNi 相變化研究 42 4.1.1 高溫熱處理 42 4.1.2 恆溫熱處理 43 4.2 CoCrFeNiAl0.5相變化研究 46 4.2.1 高溫熱處理 46 4.2.2 恆溫熱處理 49 800°C 恆溫處理 49 750°C 恆溫處理 51 700°C 恆溫處理 52 650°C 恆溫處理 53 600°C 恆溫處理 54 第五章 結 論 101 參考文獻 103

    1.D.A. Porter, K.E. Easterling, M.Y. Sherif, “Phase Transformations in Metals and Alloys”, 3rd edition (2008).
    2.B.Cantor, I.Chang, P. Knight, A.Vincent, Mater. Sci. Eng., “Advanced Functional Materials”, A 375 (2004)
    3.N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, O.N. Senkov, J. Alloys Compd., 628 (2015).
    4.O.N. Senkov, S.V. Senkova, C. Woodward, Acta Mater., 68 (2014).
    5.A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, O.N. Senkov, Mater. Sci. Eng., A 533 (2012).
    6.W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics, 26 (2012).
    7.B. Gwalani, V. Soni, D. Choudhuri, M. Lee, J.Y. Hwang, S.J. Nam, H. Ryu, S.H. Hong, R. Banerjee, Scr. Matall, 123 (2016).
    8.W.R. Wang, W.L. Wang, J.W. Yeh, J. Alloys Compd, 589 (2014).
    9.Feng He, Z.J. Wang, X.L. Shang, Chao Leng, J.J. Li, J.C. Wang, Mater. Des. 104 (2016).
    10. C.Zhang,F.Zhang,H.Diao,M.C.Gao,Z.Tang,J.D.Poplawsky,P.K.LiawUnderstanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys, Mater. Des., 109 (2016).
    11.J.W. Cahn, Acta Metall., 10, 179 (1962).
    12.D.E. Laughlin, Acta Metall., 23, 329 (1975).
    13.W.A. Soffa, D.E. Laughlin, Prog. Mat. Sci., 49, 347 (2004).
    14.W.A. Soffa, D.E. Laughlin, Acta Metall., 37, 3019 (1989).
    15.C.S. Wang, C.N. Hwang, C.G. Chao, T.F. Liu, Scripta Mater., 57, 809 (2007).
    16.H. Warlimont, Order-Disorder Transformation in Alloys, 58 (1974).
    17.C.J. Sung, W.C. Cheng, A study of spinodal decomposition and ordering reaction in Al0.5CoCrFeNi2 high entropy alloys, M.S. Thesis, National Taiwan University of Science and Technology (2018).
    18.I.S. Wani, T. Bhattacharjee, S. Sheikh, P.P. Bhattacharjee, S.Guo, N.Tsuji, Mater. Sci. Eng., A 675(2016).
    19.K.H. Huang, J.W. Yeh, A study on multicomponent alloy systems containing equal-mole elements, M.S. Thesis, Thesis National Tsing Hua University (1996).
    20.M.H. Tsai, J.W. Yeh, Mater. Res. Lett. (2014).
    21.J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mat., 6(5), 299 (2004).
    22.Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today, 19(6), 349 (2016).
    23.D. William, JR., G. David Rethwisch, “Materials Science and Engineering and Introduction”, (2009).
    24.J. Cornide, M. Calvo-Dahlborg, S. Chambreland, L. Asensio Dominguez, Z. Leong, U. Dahlborg, A. Cunliffe, R. Goodall and I. Todd, Acta Phys Pol, A 128 (2015).
    25.H.I. Aaronson, M. Enomoto, J.K. Lee, Mechanisms of Diffusional Phase Transformations in Metals and Alloys, Ch. 6 (2016).
    26.Y.S. Lim, D.J. Kim, S.S. Hwang, H.P. Kim, S.W. Kim, Mater. Charact., 96, 28 (2014).
    27.Y. Li, Y. Gao, B. Xiao, T. Min, Y. Yang, S. Ma, D. Yi, J. Alloys Compd., 509, 5242 (2011).
    28.H.J. Chen, W.C. Cheng, A study of phase transformations in an Al0.5CoCrFeNi2 high entropy alloy, M.S. Thesis, National Taiwan University of Science and Technology (2005).
    29.T.M. Butler, Phase stability and oxidation behavior of Al-Ni-Co-Cr-Fe based high-entropy alloys, Ph.D. Thesis, The University of Alabama (2016).
    30.K.S. Lee, B. Bae, J.H. Kang, K.R. Lim, Y.S. Na, Mater. Lett. 198, 81 (2017).
    31.Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G. Wang, G. Zhao, F.Q. Yang, P.K. Liawa, Mat. Sci. Eng. A, 647, 229 (2015).
    32.A. Munitz, S. Salhov, S. Hayun, N. Frage, J. Alloys Compd., 683, 221 (2016).
    33.T.M. Butler, M.L. Weaver, J. Alloys Compd., 674, 229 (2016).
    34.B. Gwalani, D. Choudhuri, V. Soni, Y. Ren, M. Styles, J.Y. Hwang, S. J. Nam, H. Ryu, S.H. Hong, R. Banerjee, Acta Mater., 129, 170 (2017).
    35.T.M. Butler, M.L. Weaver, J. Alloys Compd., 691, 119 (2017).
    36.D.B. Miracle, O.N. Senkov, Acta Mater., 122, 448 (2017).
    37.Y. Lv, R. Hu, Z.H. Yao, J. Chen, D.P. Xu, Y. Liu, X.H. Fan, Mater. Des., 132, 392 (2017).
    38.K.H. Han, On the coarsening of the modulated structure during aging of austenitic Fe-Mn-Al-C alloys prepared by the rapid solidification process, Mat. Sci. Eng. A, 197, 223 (1995).
    39.W.K. Choo, J.H. Kim, J.C. Yoon, Microstructural change in austenitic Fe-30.0wt%Mn-7.8wt%Al-1.3wt%C initiated by spinodal decomposition and its influence on mechanical properties, Acta Mater., 45, 4877 (1997).
    40.M.C. Li, H. Chand, P.W. Kao, D. Gan, The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe-Mn-Al-C alloys, Mater. Chem. Phys., 59, 96 (1999).
    41.H. Warlimont, Order-Disorder Transformation in Alloys, 58 (1974).
    42.T.F. Liu, C.M. Wan, DO3 structure in an Fe-Al-Mn-Cr alloy, Scripta Metall., 19, 805 (1985).
    43.C.J. Sung, W.C. Cheng, A study of spinodal decomposition and ordering reaction in Al0.5CoCrFeNi2 high entropy alloys, M.S. Thesis, National Taiwan University of Science and Technology (2018).
    44.Bhattacharjee, T., Wani, I.S., Sheikh, S., Clark, I.T., Okawa, T., Guo, S., Bhattacharjee, P.P. Simultaneous Strength-Ductility Enhancement of a Nano-Lamellar AlCoCrFeNi2.1 Eutectic High Entropy Alloy by Cryo-Rolling and Annealing, Sci. Rep. 8, 3276 (2018).
    45.Wani, I. S. et al. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing, Sci. Eng. A 675, 99 (2016).
    46.C.M. Kuo, C.W. Tsai, Effect of cellular structure on the mechanical property of Al0.2Co1.5CrFeNi1.5Ti0.3 high-entropy alloy, Mater. Chem. Phys. 210, 103 (2017).
    47.M.H Tsai, Significant hardening due to formation of a sigma phase matrix in a high entropy alloy (2012).

    無法下載圖示 全文公開日期 2025/02/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE