簡易檢索 / 詳目顯示

研究生: 葉東育
Dong-Yu Yeh
論文名稱: 以共濺鍍法製備固態氧化物燃料電池之銅-氧化鈰-氧化鋯與鎳-氧化鈰-氧化鋯複合薄膜陽極之研究
The Study of Sputter-Deposited Cu-CeO2-YSZ and Ni-CeO2-YSZ Thin Film Anodes for SOFC
指導教授: 周賢鎧
Shyankay Jou
口試委員: 胡毅
Yi Hu
周振嘉
Chen-Chia Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 107
中文關鍵詞: 固態氧化物燃料電池Ni-CeO2-YSZ陽極Cu-CeO2-YSZ陽極共濺鍍
外文關鍵詞: SOFC, Co-sputter, Ni-CeO2-YSZ, Cu-CeO2-YSZ
相關次數: 點閱:272下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究以Cu-CeO2-YSZ與Ni-CeO2-YSZ兩種不同材料系統作為固態氧化物燃料電池的陽極材料,分別利用磁控式共濺鍍系統製備CuO-CeO2-YSZ薄膜與NiO-CeO2-YSZ薄膜,再予以適當的熱處理與還原方式,使其形成多孔性結構的CuO-CeO2-YSZ薄膜與NiO-CeO2-YSZ薄膜,用於固態氧化物燃料電池的陽極材料,藉以增加三相界面反應點,進而降低反應極化電阻,提高電池效能。
實驗第一部份是以Cu-CeO2-YSZ為陽極的材料系統,再分別以共濺鍍方式沉積CuO-CeO2-YSZ複合薄膜與Cu-Ce-Zr-Y金屬薄膜,分別進行500℃熱處理與300℃氫氣還原。實驗結果發現在9.46 vol%以上Cu含量的試片經過熱處理後會有銅的顆粒析出於薄膜表面,使得薄膜內部的銅含量降低,還原後僅在析出至表面的銅顆粒聚集處發現孔洞,薄膜內部並無發現明顯之孔洞形成。由於CuO-CeO2-YSZ材料系統經熱處理與還原後沒有形成多孔性微結構,且目前尚無適當方式解決此現象,故改以Ni-CeO2-YSZ作為薄膜陽極材料。
實驗第二部份是以Ni-CeO2-YSZ為陽極的材料系統,以共濺鍍方式沉積NiO-CeO2-YSZ複合薄膜後,分別嘗試以直接吹氫還原與二階段熱處理還原兩種方式,將NiO-CeO2-YSZ薄膜還原為多孔性Ni-CeO2-YSZ薄膜。實驗結果發現,剛濺鍍出的NiO-CeO2-YSZ薄膜在未經過退火處理直接進行800℃氫氣還原,會在薄膜表面成長出金屬鎳的奈米線結構,並留下具有孔洞的微結構。而若是剛濺鍍出的NiO-CeO2-YSZ薄膜經過900℃熱處理後,再進行800℃氫氣還原,則無奈米線結構的生成,並有多孔的結構。鎳奈米線的析出造成薄膜內的Ni含量減少,因此採用二階段熱處理還原方式製備多孔性的Ni-CeO2-YSZ薄膜陽極。
本論文研究之Ni-CeO2-YSZ薄膜進一步應用為燃料電池之陽極,並與以La0.7Sr0.3MnO3與8YSZ粉末依照50wt%:50wt%的比例網印於圓碟型電解質YSZ上以形成電池之陰極,共同組成燃料電池。電池於以甲烷與空氣為燃料氣氛的單氣室電池量測系統中進行量測,量測結果得到在550℃下有最大開路電壓0.4V與最大功率密度0.23 mW/cm2。


In this study, we investigate two different material systems, Cu-CeO2-YSZ and Ni-CeO2-YSZ, for the anode of solid oxide fuel cell (SOFC). By using co-sputter deposition technique, we deposit CuO-CeO2-YSZ or NiO-CeO2-YSZ film, and then use appropriate annealing and reducing conditions to form porous Cu-CeO2-YSZ or Ni-CeO2-YSZ film. The porous structure is expected to increase the three phase boundary and to reduce the polarization loss of the cell.
The first part of study focuses the Cu-CeO2-YSZ material system. We deposited CuO-CeO2-YSZ thin film and Cu-Ce-Zr-Y metal thin film, respectively, following 500℃ annealing and 300℃ reduction in H2. It is found that some Cu particles precipitated out from the surface of thin film, which contains more than 9.46vol%-Cu, after annealing. The Cu precipitation reduced the concentration of Cu in the film. Pores are induced on the region of separated particles only, but not in the inner of the film. There is no appropriate way to overcome this problem at this moment, so the focus was changed to Ni-CeO2-YSZ.
The second part of study focuses on the Ni-CeO2-YSZ material system. NiO-CeO2-YSZ thin films were deposited by co-sputtering, and then heat-treated by two different methods, direct reduction in H2 atmosphere and 2-step annealing and reduction. After the post treatments, the NiO-CeO2-YSZ thin films were converted to Ni-CeO2-YSZ thin film. The Ni nanowire would appear on the surface of the thin film if it is reduced in H2 directly without prior annealing. There were some pores in the thin films prepared by direct reduction. On the other way, if it was annealed at 900℃ firstly and then reduced in H2, the structure will become porous without forming Ni nanowire. Therefore, porous Ni-CeO2-YSZ films were prepared using the 2-step annealing and reduction.
The Ni-CeO2-YSZ was used as anode, 8YSZ disc as electrolyte, and La0.7Sr0.3MnO3 - 8YSZ (50 wt%: 50 wt% ) as cathode to form fuel cells. Performance of the cell was measured in single chamber system using the mix gases of CH4, dry air and water vapor. The maximum open circuit voltage is 0.4V and the maximum power density is 0.23 mW/cm2 at 550℃.

摘要 I Abstract III 誌謝 V 目錄 VII 表目錄 IX 圖目錄 X 第一章 前言 1 第二章 文獻回顧 5 2.1 燃料電池簡介 5 2.2 固態氧化物燃料電池 6 2.3 固態氧化物燃料電池之工作原理 9 2.4 固態電解質 10 2.5 電極結構與工作原理 14 2.5.1 陰極材料 (錳酸鍶鑭氧化物, La xSr1-x MnO3) 15 2.5.2 陽極材料--Cu-CeO2-YSZ與Ni-CeO2-YSZ之陶金陽極 17 2.5.3 現行Cu-CeO2-YSZ陶金陽極的製備方式 19 2.6 燃料電池之電化學原理與量測系統 22 2.6.1 電極之極化曲線(polarization Curve) 22 2.6.2 雙氣室之量測系統(Two Chamber System) 23 2.6.3 單氣室之量測系統(Single Chamber System) 24 第三章 實驗原理 26 3.1 電漿的產生(Plasma) 26 3.2 磁控式濺鍍(Magnetron Sputtering) 27 3.3 射頻濺鍍 28 3.4 反應式濺鍍(Reactive Sputtering) 28 3.5 吹氫還原與真空熱還原 29 3.5.1 Ellingham圖的斜率 31 3.5.2 由Ellingham圖決定金屬氧化活性大小 32 3.5.3 由Ellingham圖求CO/CO2混合比例與金屬氧化還原的關係 32 3.5.4 由Ellingham圖求H2/H2O混合比例與金屬氧化還原的關係 33 第四章 實驗方法與步驟 35 4.1 實驗材料與藥品規格 35 4.2 實驗儀器與裝置 36 4.2.1 磁控式共濺鍍系統(Magnetron Co-sputtering System) 37 4.2.2 真空爐(石英管狀爐) 38 4.3 實驗步驟 41 4.3.1 Cu-CeO2-YSZ多孔性薄膜陽極之製備 41 4.3.1-1 靶材參數測試 41 4.3.1-2 以反應式共濺鍍製備Cu-CeO2-YSZ多孔性薄膜陽極 42 4.3.1-3 以共濺鍍方式製備Cu-Ce-Zr-Y薄膜 45 4.3.2 基材試片之準備 46 4.3.2-1 矽基材製備、清洗與前處理 46 4.3.2-2 8YSZ基材製備 47 4.3.3 鑭鍶錳氧化物(La0.7Sr0.3MnO3)陰極之製備 48 4.3.4 Ni-CeO2-YSZ多孔性薄膜陽極之製備 49 第五章 實驗結果與討論 51 5.1 Cu-CeO2-YSZ薄膜陽極 51 5.1.1 Ce-Zr-Y靶材測試 51 5.1.2 反應式共濺鍍製備CuO-CeO2-YSZ 55 5.1.2-1 通入氧氣流量0.2sccm進行反應式濺鍍 55 5.1.2-2 以熱氧化法製備金屬氧化物薄膜 64 5.2 Ni-CeO2-YSZ多孔性薄膜陽極 70 5.2.1 鍍膜功率與薄膜厚度之關係 70 5.2.2 直接吹氫還原 71 5.2.2-1 XRD分析 71 5.2.2-2 SEM表面形貌分析 73 5.2.3 經過熱氧化後再氫氣還原 76 5.2.3-1 XRD分析 76 5.2.3-2 SEM表面形貌分析 77 5.2.4 直接吹氫還原與熱氧化後吹氫還原的比較討論 79 5.3 固態氧化物燃料電池各元件製備與分析 81 5.3.1 碟形8YSZ電解質 81 5.3.2 錳酸鍶鑭(La0.7Sr0.3MnO3)陰極 82 5.3.3 Ni-CeO2-YSZ薄膜陽極 83 5.4 固態氧化物燃料電池測試 84 5.4.1 單電池量測 (Ⅰ) 84 5.4.2 單電池量測 (Ⅱ) 88 5.4.3 單電池量測 (Ⅲ) 91 5.4.4 單電池長時效量測 93 第六章 結論 95 第一部份 以Cu-CeO2-YSZ做為陽極材料 95 第二部份 以Ni-CeO2-YSZ做為陽極材料 95 未來研究方向 97 參考文獻 98

1. 陳俊偉,「固態氧化物燃料電池氧化鋯電解質之韌性與金屬雙極板抗氧化性研究」,國立台灣科技大學材料所碩士論文,民國94年,7月。
2. 韓敏芳、李伯濤,「高效潔淨的能源技術---固體氧化物燃料電池(SOFC)開發利用」,21世紀綠色城市論壇論文彙編,11 (2001) 190-194,中國廈門。
3. 衣寶廉(編)、黃朝榮、林修正(校訂),「固態氧化物燃料電池」,燃料電池-原理與應用,第430~550頁,台北,五南圖書,民國94年。
4. E. Ponthieu, “European fuel cell research, development and demonstrations: Future programmers and aims”, J. Power sources, 72 (1998) 244.
5. R. A. George, N. F. Bessette, “Reducing the manufacturing cost of tubular SOFC technology”, J. Power sources, 71 (1998) 131-137.
6. 須齋 嵩,「燃料電池的最新開發動向」,電子材料,日本東京工業調查會45(2006) 56-57.
7. 王先毅、呂明生等人編,材料會訊,第十二卷,第一期,第46頁 ,94年 3月。
8. D. Rotureau, J.-P. Viricelle, C. Pijolat, N.Caillol and M. Pijolat, “Development of a Planar SOFC Device Using Screen-Printing Technology”, J. Eur. Ceram. Soc., 25 (2005) 2633-2636.
9. H. Abe, K. Murata, T. FuKui, W.-J. Moon, K. Kanek and M. Naito, “Micro Structural Control of Ni-YSZ Cermet Anode for Planner Thin-Film Solid Oxide Fuel Cells”, Thin Solid Films, 496 (2006) 49-52.
10. M. Radovic and E. Lara-Curzio, “Mechanical properties of tape cast nickel-basked anode materials for solid oxide fuel cells before and after reduction in hydrogen”, Acta Mater., 52 (2004) 5747-5756.
11. S. P. Jiang and S. H. Chan, “Development of Ni/Y2O3-ZrO2 Cermet Anode for Solid Oxide Fuel Cells”, Mater. Sci. Technol., 20 (2004) 1109-1118.
12. R. Craciun, S. Park, R. J. Gorte, J. M. Vohs, C. Wang, and W. L. Worrell, “A Novel Method for Preparing Anode Cermets for Solid Oxide Fuel Cells”, J. Electrochem. Soc., 146 (1999) 4019-4022.
13. S. Park, R. Craciun, J. M. Vohs and R. J. Gorte, “Direct Oxidation of Hydrocarbons in a Solid Oxide Fuel Cell-I. Methane Oxidation”, J. Electrochem. Soc., 146 (1999) 3603~3605.
14. H. He, J. M. Vohs and R. J. Gorte, “Effect of Synthesis Conditions on the Performance of Cu-CeO2-YSZ Anodes in SOFCs”, J. Electrochem. Soc., 150 (2003) A1470~A1475.
15. N. Nakagawa, H. Sagara and K. Kato, “Catalytic Activity of Ni-CeO2-YSZ Anode for The Stream Reforming of Methane in a Direct Internal-Reforming Solid Oxide Fuel Cell”, J. Power Sources, 92 (2001) 88-94.
16. V. D. Belyaev, T. I. Politova, O. A. Mar’ina, V. A. Sobyanin, “Internal Stream Reforming of Methane Over Ni-Based Electrode in Solid Oxide Fuel Cell”, Appl. Catal. A: Gen. 133 (1995) 47-57.
17. A. U. Dufour, “Fuel Cells---a new contributor to stationary power”, J. Power Sources, 71 (1998) 19-25.
18. 黃鎮江編,「燃料電池之簡介」,燃料電池,第1 ~9頁,台北,全華科技,民國94年,3月。
19. Brief history of fuel cells. http://www.corrosion-doctors.org/FuelCell/History.htm
20. N. Q. Minh, “High-Tenperature Fuel Cells. Part 2: The Solid Oxide Cells”, Chem. Tech. 21 (1991) 120-26.
21. A. H. Heuer and L.W. Hobbs. (Eds), Advances in Ceramics, Vol. 3, Science and. Technology of Zirconia, Columbus, OH, USA,1981.
22. A. B. Stambouli and E. Traversa, “Solid Oxide fuel Cells(SOFCs):a Review of an Environmentally clean and Efficient Source of Energy”, Renew. Sust. Energ. Rev., 6 (2002) 433-455.
23. 黃炳照,鄭銘堯,「固態氧化物燃料電池之進展」,化工技術,第十卷,第6期,第132-148頁,民國91年,6月。
24. 蔡景文譯,「固態氧化物質型燃料電池系統」,電機月刊,第二卷,第九期,第158-163頁,民國81年,9月。
25. S. M. Haile, “Fuel cell materials and component”, Acta Mater., 51 (2003) 59-81.
26. N. Bonanos, R. K. Slotwinski, B. C. H. Steel and E. P. Butler, “High ionic conductivity in polycrystalline tetragonal Y2O3-ZrO2”, J. Mater. Sci. Lett., 3 (1984) 245.
27. R. Steven, 2nd ,“Textbook on Zirconia”Magnesium Elektron”, (New York, 1983) p. 38.
28. 郭景坤等譯,「陶瓷的結構與性能」,科學出版社,北京,6 (1998) p.94。
29. A. H. Heuer and M. Ruhle, “On the nucleation of the martensitic transformation in zirconia”, Acta Metall., 33 (1985) 2101-2112.
30. M. Ruble and A. H. Heuer, in “Phase transformation in ZrO2 containing ceramics”, The martensitic reaction in t-ZrO2” Advance in ZrO2 vol. 12, Science and technology of ZrO2. Edited by N. Claussen, M. Ruhle, and A. H. Heuer. Am. Cera. Soc., Columbus, OH, (1984).
31. A. G. Evans and R. M. Cannon, “Toughening of brittle solids by martensitic transformations”, Acta metal., 34 (1986) 761-800.
32. F. F. Lange, “Transformation toughening: Part 5: Effect of temperature and alloy on fracture toughness”, J. Mater. Sci., 17 (1982) 255-62.
33. J. F. Baumard and P. Abelard, in “Science and Technology of Zirconia II”, N. Claussen, M. Rühle, and A. H. Heuer (eds.), Am. Cera. Soc., Columbus, OH , 555 (1984).
34. N. L. Robertson and J. N. Michaels, “Oxygen Exchange on Platinum Electrodes in Zirconia Cells: Location of Electrochemical Reaction Sites”, J. Electrochem. Soc., 137 (1990) 129-135.
35. T. H. Etsell and S. N. Flengas, “Overpotential Behavior of Stabilized Zirconia Solid Electrolyte Fuel Cells”, J. Electrochem. Soc., 118 (1971) 1890-1900.
36. S. C. Singhal and K. Kendall. (Eds),“High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications”, Elsevier, Birmingham, UK, 2003.
37. A. Weber and E. Ivers-Tiffée, “Materials and Concepts for Solid Oxide Fuel Cells (SOFCs) in Stationary and Mobile Applications”, J. Power Sources, 127 (2004) 273–283.
38. L. Armelao, D. Barreca and G. Bottaro, “Hybrid Chemical Vapor Deposition/ Sol-Gel Route in the Preparation of Nanophasic LaCoO3 Films”, Chem. Mater. 17 (2005) 427-433.
39. C. Xia, W. Rauch, F. Chen, M. Liu, “Sm0.5Sr0.5CoO3 Cathodes for low-temperature SOFCs”, Solid State Ionics, 149 (2002) 11-19.
40. S. P. Simner, J. F. Bonnett, N. L. Canfield, K. D. Meinhardt, J. P. Shelton, V. L. Sprenkle and J. W. Stevenson, ”Development of Lanthanum Ferrite SOFC Cathodes”, J. Power Sources, 113 (2003) 1–10.
41. 張鈞源,「複合材料電極濺鍍於鐵電材料之電性研究」,台灣科技大學材料所碩士論文,民國94年,7月。
42. J. H. Lee, H. Moon, H. W. Lee, J. Kim, J. D. Kim, J. H. Yoon, “Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni-YSZ cermet”, J. Solid State Ionics, 148 (2002) 15-26.
43. W. Hu, H. Guan, X. Sun, S. Li, M. Fukumoto, I. Okane, “Electrical and Thermal Conductivities of Nickel- Zirconia Cermets”, J. Am. Ceram. Soc. 81 (1998) 2209.
44. C. H. Bartholomew, Catal. Rev. Sci. Eng., 24 (1982) 67.
45. H. Alqahtany, D. Eng, and M. Stoukides, Energy Fuels, 7 (1993) 495.
46. 陳建忠「以Ni-SDC作為固態氧化物燃料電池陽極材料行直接內部甲烷蒸氣重組反應之研究」,清華大學化學工程所碩士論文,民國 91 年,7月。
47. T. Horita, K. Yamaji, T. Kato, H. Kishimoto, Y. Xiong, N. Sakai, M. E. Brito and H. Yokokawa, “Imaging of CH4 Decomposition around the Ni/YSZ Interfaces under Anodic Polarization”, J. Power Sources, 145 (2005) 133–138.
48. B. C. H. Steele, P. H. Middleton, R. Rudkin, Solid State Ionics, 40/41(1990) 388.
49. K. Eguchi, T. Setoguchi, T. Inoue, Solid State Ionics, 52 (1992) 165.
50. G. Mogensen, “Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2”, J. Electrochem. Soc., 141(1994) 2122-2128.
51. E. S. Putna, J. Stuberauch, J. M. Vohs, Langmuri, 1995, 11, 4832.
52. R. J. Gorte and J. M. Vohs, “Novel SOFC Anodes for the Direct Electrochemical Oxidation of Hydrocarbons”, J. Catal. 216 (2003) 477-486.
53. R. Craciun, S. Park, R. J. Gorte, J. M. Vohs, C. Wang and W. L. Worrellb, “A Novel Method for Preparing Anode Cermets for Solid Oxide Fuel Cells”, J. Electrochem. Soc., 146 (1999) 4019-4022
54. 王月、熊楚強 主編,新版電化學,第109~130頁,台北,新文京出版社,民國93年。
55. M. Guillodo , P. Vernoux and J. Fouletier, “Electrochemical Properties of Ni–YSZ Cermet in Solid Oxide Fuel Cells Effect of Current Collecting”, Solid State Ionics, 127 (2000) 99-107.
56. T. W. Napporn, X. J. Be´dard, F. Morin and M. Meuniera , “Operating Conditions of a Single-Chamber SOFC”, J. Electrochem. Soc., 151 (2004) A2088-A2094.
57. B. E. Buergler, M. E. Siegrist and L. J. Gauckler, “Single chamber solid oxide fuel cells with integrated current-collectors”, Solid State Ionics, 176, (2005) 1717-1722.
58. B. Chapman, “Glow Discharge Process”, J. Wiley and Sons, New York, 1982.
59. 羅吉宗編,「第二章 電漿物理」,薄膜科技與應用,台北,全華科技,民國94年。
60. 柯賢文編,「第五章 濺鍍鍍膜」,表面與薄膜處理技術,台北,全華科技,民國94年。
61. D. L. Smith, “Thin film Deposition Principles and Practice”, The McGraw-Hill Companies, Inc., 1999, p 483-499.
62. M. Ohring, “The Materials Science of Thin Film”, Academic Press, 1992.
63. C. Y. Chang, F. Kai, “GaAs High-Speed Devices”, J. Wiley and Sons, Inc., 1994, p 142-143.
64. J. R. Hollahan and W. Kern (Eds), “Thin Film Process”, Academic Press, New York , 1978.
65. J. Chapin, U.S. Patent No.438482, 1974; S. Schiller, Thin Solid Films, 40 (1997), 327.
66. W. D. Westwood and S. Maniv, “The Current-Voltage Characteristic of Magnetron Sputtering System”, J. Appl. Phys., 54 (1983) 6841-6846.
67. S. Maniv and W. D. Westwood, “Calculation of the Current-Voltage-Pressure Characteristic of Dc Diode Sputtering Discharge”, J. Appl. Phys., 53 (1982) 856-860.
68. D. R. Gaskell, in “Introduction to the Thermodynamics of Materials”, Taylor & Francis, Washington, DC, (1995) p.347-371.
69. R. J. Gorte, S. Park, J. M. Vohs, and C. Wang, “Anodes for Direct Oxidation of Dry Hydrocarbons in a Solid-Oxide Fuel Cell”, Adv. Mater., 12(2000) 1465-1469.
70. K. Abe, Y. Harada, M. Yoshimaru, and H. Onoda, “Oxidation and Reduction Characteristics of Sputter-Deposited Cu Thin Films”, J. Electrochem. Soc.,152 (2005) G577-G581.
71. X. Jiang, T. Herricks, and Y. Xia, “CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air.” Nano Lett. Vol 2, No. 12, (2002), 1333-1338.
72. C. H. Xu, C. H. Woo, S. Q. Shi, “Formation of CuO Nanowires on Cu Foil”, Chem. Phys. Lett., 399 (2004) 62-66.
73. M. Kaur, K. P. Muthe, S. K. Despande, S. Choudhury, J. B. Singh, N. Verma, S. K. Gupta, J. V. Yakhmi, “Growth and Branching of Nanowires by Thermal Oxidation of Copper”, J. Crystal Growth, 298 (2006) 670-675.
74. C. T. Hsiao, J. M. Chen, H. H. Lin, H. C. Shih, “Field Emission from Various CuO Nanostructures”, Appl. Phys. Lett., Vol. 83 (2003) 3383-3385.
75. W. Zhang, S. Ding, Z. Yang, A. Liu, Y. Qian, S. Tang, “Growth of Novel Nanostructured Copper Oxide (CuO) Films on Copper Oil”, J. Crystal Growth, 291 (2006) 479-484.
76. 吳姿慧,「以共濺鍍法製備固態氧化物燃料電池之鎳-氧化鋯陽極薄膜研究」,國立台灣科技大學材料科技研究所碩士論文,民國95年,5月。
77. Q. Zhung, Y. Qin, L. Chang, “Promoting Effect of Cerium Oxide in Support Nickel Catalyst for Hydrocarbon Stream-Reforming”, Appl. Catal., 70 (1991) 1-8.
78. 王貞芮,「添加銅之二氧化矽複合薄膜之研究」,國立台灣科技大學材料科技研究所碩士論文,民國94年,6月。
79. H. Koide, Y. Someya, T. Yoshida and T. Maruyama, “Properties of Ni/YSZ Cermet as Anode for SOFC”, Solid State Ionics, 132 (2000) 253–260.
80. T. Matsushima, H. Ohrui and T. Hirai, “Effects of Sinterability of YSZ Powder and NiO Content on Characteristics of Ni-YSZ Cermets”, Solid State Ionics, 111 (1998) 315–321.
81. 韓敏芳,彭蘇萍,「固態氧化物燃料電池材料及製備」,北京,科學出版社,2004年,P.128。

QR CODE