簡易檢索 / 詳目顯示

研究生: 邱懿安
Yi-An Chiu
論文名稱: 使用金屬矽化物共晶合金與石墨之共蒸鍍合成碳化矽之研究
Formation of silicon carbide by co-evaporation of silicide alloy and graphite
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 顏怡文
Yee-wen Yen
陳貞光
Jhewn-Kuang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 113
中文關鍵詞: 碳化矽矽化物合金石墨共蒸鍍
外文關鍵詞: Silicon Carbide, silicide alloy, Graphite, Co-Evaporation
相關次數: 點閱:244下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文針對碳化矽的低溫製備,考慮利用具有低共晶點的金屬矽化物合金作為合成碳化矽的矽來源,利用金屬矽化物合金比起原始組成之金屬有熔點急劇下降的特性,期望在較低的溫度下使其與活性碳反應來生成碳化矽鍵結。
實驗上採用電子束與熱蒸鍍法共蒸鍍石墨與合金,在合金的共晶溫度附近使矽源蒸發,使合金分子在基板表面與電子束蒸發之碳源結合而成長出碳化矽薄膜。首先,在以共晶溫度為363 ℃的金矽合金沉積實驗發現,在280 ℃的基板上沉積物中的矽原子構成即有31%呈現碳化矽鍵結,且當基板溫度升至480℃時碳化矽鍵結可達到54%。將沉積物中碳化矽鍵結轉化率對基板溫度的變化求得約2.2 kcal/mol的活化能,可據以推測金矽合金蒸發物吸附到基板後的表面擴散為沉積物得以轉化成碳化矽鍵結的速率決定步驟。
其次在使用共晶溫度為835 ℃的銀矽合金的沉積實驗發現,基板溫度在300 ~ 600℃範圍內沉積物的碳化矽鍵結轉化活化能約為1.8 kcal/mol,,惟Si-C鍵結含量在基板可調的最高溫度600℃時僅達7.8 at%,顯示提升基板溫度至合金共晶溫度以上使得吸附物種擁有較高的表面移動度為碳化矽鍵結生成的必要條件。


In this study, silicon carbide was synthesized, for the first time, utilizing metal silicide alloys with low eutectic point as the silicon resource to react with activated carbon at low temperatures. First of all, co-deposition of gold silicide and graphite was performed using thermal evaporation and electron-beam deposition techniques, respectively. The deposition results showed that 31% of the silicon in the original alloy is converted to Si-C bonding at 280 °C substrate temperature which is even lower that the eutectic point of gold silicide (363 °C). An energy barrier of 2.2 kcal/mol was obtained from the variation of Si-C bonding conversion ratio with respect to substrate temperature, suggesting that surface diffusion of the absorbed Au-Si alloy species controls the Si-C bonding conversion process.
Secondly, in the deposition experiment of Ag-Si alloy system that has a much higher eutectic point of 835 °C, the activation energy for the Si-C bonding transformation when the substrate temperatures was in the range of 300-600 °C was about 1.8 kcal/mol. However, Si-C bonding conversion was as low as 7.8 atomic percentage. This result indicated that high substrate temperature is necessary to provide enough surface energy for the adsorbed silicide species to convert to SiC bonding.

中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 xii 第一章 緒論 1 1.1 前言 1 1.2 研究動機和方向 3 第二章 文獻回顧 5 2.1 碳化矽結構 5 2.2 碳化矽材料特性 10 2.2.1 寬能隙、低載子濃度和高崩潰電場 10 2.2.2 電子飽和速度 15 2.2.3 熱傳導率 17 2.2.4 機械性質、化學性質 18 2.3 碳化矽塊材製備方式 20 2.3.1 高溫昇華法(sublimation method) 21 2.3.2 高溫化學氣相沉積法(HTCVD) 23 2.3.3 溶液生長法(solution growth) 24 2.4 磊晶技術 26 2.4.1 磊晶方法 26 2.4.2 異質/同質磊晶 30 2.5 碳化矽的應用 33 第三章 實驗設備材料相關 34 3.1 實驗流程 34 3.2 矽基板清洗流程 35 3.3 實驗材料與氣體矽基板(silicon wafer) 37 3.4 實驗設備 39 3.5 分析儀器 41 3.5.1 橢圓偏光儀(Spectroscopic Ellipsometry, SE) 41 3.5.2 傅立葉紅外線光譜儀(Fourier-transform infrared spectroscopy, FTIR) 43 3.5.3 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 44 3.5.4 拉曼散射光譜儀(Raman Scattering Spectroscope, Raman) 45 3.5.5 場效高解析掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, SEM) 47 第四章 結果與討論 48 4.1 回顧金矽合金與石墨共蒸鍍製備碳化矽薄膜之實驗 50 4.1.1 推測金矽合金與石墨共蒸鍍製備碳化矽薄膜之反應途徑 57 4.2 以銀矽合金與石墨共蒸鍍製備碳化矽薄膜 62 4.2.1不同基板溫度對碳化矽薄膜的影響 63 4.2.2不同鍍率對碳化矽薄膜的影響 73 4.3 以銅矽合金與石墨共蒸鍍製備碳化矽薄膜 80 4.3.1 不同基板溫度對碳化矽薄膜的影響 81 第五章 總結論 90 第六章 參考文獻 91

[1] S. M. Sze and M. K.Lee, “Semiconductor devices, physics and technology,” Wiley, 2012.
[2] P. L. Dreike, D. M. Fleetwood, D. B. King, D. C. Sprauer, and T. E. Zipperian, “An overview of high-temperature electronic device technologies and potential applications,” High-Temperature Electronics, vol. 17, no. 4 , pp. 48–62, 1998.
[3] J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, and J. Rebollo, “A survey of wide bandgap power semiconductor devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2155–2163, 2014.
[4] R. P.Elliott and F. A. Shunk, “The Au-Si (Gold-Silicon) system,” Bull. Alloy Phase Diagrams, vol. 4, no. 4, p. 362, 1983.
[5] W. F. Smith, “Foundations of Materials Science and Engineering, ” McGraw-Hill, 1993.
[6] K. Järrendahl and R. F. Davis, “Materials Properties and Characterization of SiC,” Semicond. Semimetals, vol. 52, no. C, pp. 1–20, 1998.
[7] A. R. Powell and L. B.Rowland, “SiC materials - Progress, status, and potential roadblocks,” Proc. IEEE, vol. 90, no. 6, pp. 942–955, 2002
[8] M. Mukherjee, “Silicon Carbide - Materials , Processing and Applications in Electronic Devices, ” InTech. 2011.
[9] T. Kimoto and J. A. Cooper, “Fundamentals of silicon carbide technology: growth, characterization, devices and applications,” Wiley, 2014.
[10] W. J. Choyke, “Optical properties of polytypes of SiC: interband absorption, and luminescence of nitrogen-exciton complexes,” Silicon Carbide–1968, pp. S141–S152, 1969.
[11] S. Adachi,“Properties of Group-IV, III–V and II–VI Semiconductor, ” JohnWiley&Sons, Ltd, Chichester, 2005.
[12] S. M.Sze and K. K.Ng, “Physics of semiconductor devices,” Choice Rev. Online, vol. 27, no. 11, pp. 27-6393-27–6393, 2013.
[13] J. L. Hudgins, G. S. Simin, E. Santi, and M. A.Khan, “An assessment of wide bandgap semiconductors for power devices,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 907–914, 2003.
[14] T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans. Electron Devices, vol. 41, no. 8, pp. 1481–1483, 1994.
[15] E. O. Johnson, “Physical limitations on frequency and power parameters of transistors,” Semiconductor Devices: Pioneering Papers, WORLD SCIENTIFIC, pp. 295–302, 1991.
[16] R. W. Keyes, “Figure of merit for semiconductors for high-speed switches,” Proc. IEEE, vol. 60, no. 2, pp. 225–225, 1972..
[17] B. Yongxi Zhang and P. H.Jian Zhao, “Development of 4H Silicon Carbide JFET-based Power Integrated Circuits.” Rutgers The State University of New Jersey-New Brunswick, 2008.”
[18] G. A. Slack, “Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond,” J. Appl. Phys., vol. 35, no. 12, pp. 3460–3466, 1964.
[19] J. A. Lely, “Darstellung von Einkristallen von Silizium Carbid und Beherrschung von Art und Menge der eingebauten Verunreinigungen,” Ber.Dt.Keram.Ges., vol. 32, no. 8, pp. 231–299, 1955.
[20] Y. M. Tairov and V. F. Tsvetkov, “Investigation of growth processes of ingots of silicon carbide single crystals,” J. Cryst. Growth, vol. 43, no. 2, pp. 209–212, 1978.
[21] D. H. Hofmann and M. H. Müller, “Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals,” Mater. Sci. Eng. B, vol. 61–62, pp. 29–39, 1999.
[22] K. Kamei, K. Kusunoki, N. Yashiro, N. Okada, T. Tanaka, and A. Yauchi, “Solution growth of single crystalline 6H, 4H-SiC using Si–Ti–C melt,” J. Cryst. Growth, vol. 311, no. 3, pp. 855–858, 2009.
[23] M.Syväjärvi, R. Yakimova, H. H. Radamson, N. T. Son, Q. Wahab, I.G. Ivanov, E. Janzén, “Liquid phase epitaxial growth of SiC,” J. Cryst. Growth, vol. 197, no. 1–2, pp. 147–154, 1999.
[24] T. Miyazawa, S. Yoshida, S. Misawa, S. Gonda, and I. Ohdomari, “Molecular and ion beam epitaxy of 3C‐SiC,” Appl. Phys. Lett., vol. 45, no. 4, pp. 380–382, 1984.
[25] H. Matsunami, “Progress in epitaxial growth of SiC,” Phys. B Condens. Matter, vol. 185, no. 1–4, pp. 65–74, 1993.
[26] G. Ferro and C. Jacquier, “Growth by a vapour–liquid–solid mechanism: a new approach for silicon carbide epitaxy,” New J. Chem., vol. 28, no. 8, pp. 889–896, 2004.
[27] Y. F.Chen, X. Z.Liu, X. W.Deng, and Y. R.Li, “Characterization of 3C-SiC micro-pillars on Si(100) substrate grown by vapor-liquid-solid process,” Thin Solid Films, vol. 517, no. 9, pp. 2882–2885, 2009.
[28] M. Soueidan , G. Ferro, C. Jacquier, P. Godignon, T. Stauden, J. Pezoldt, M. Lazar, J. Montserrat, “Improvement of 4H-SiC selective epitaxial growth by VLS mechanism using Al and Ge-based melts,” Diam. Relat. Mater., vol. 16, no. 1, pp. 37–45, 2007.
[29] J. Lorenzzi, G. Ferro, F. Cauwet, V. Souliere, and D. Carole, “Growing 3C-SiC heteroepitaxial layers on α-SiC substrate by vapourliquidsolid mechanism from the AlGeSi ternary system,” J. Cryst. Growth, vol. 318, no. 1, pp. 397–400, 2011.
[30] 楊雅嵐 ;江柏風. “新世代元件 - 我國碳化矽元件發展策略, ” R.O.C: Industial Economics & Knowledge Center. 2010.
[31] J. E. Ayers, T. Kujofsa, P. Rago, J. Raphael, T. Kujofsa, P. Rago, J. Raphael.,“Heteroepitaxy of semiconductors : theory, growth, and characterization, ” Second edition. Boca Raton : Taylor &
Francis Group, a CRC: CRC Press, 2016.
[32] H. Matsunami, S. Nishino, and H. Ono, “IVA-8 heteroepitaxial growth of cubic silicon carbide on foreign substrates,” IEEE Trans. Electron Devices, vol. 28, no. 10, pp. 1235–1236, 1981.
[33] K. Danno, K. Hashimoto, H. Saitoh, T. Kimoto, and H. Matsunami, “Low-concentration deep traps in 4H-SiC grown with high growth rate by chemical vapor deposition,” Japanese J. Appl. Physics, Part 2 Lett., vol. 43, no. 7 B, pp. 4–7, 2004.
[34] 林有德, “第三代半導體材料碳化矽發展趨勢研究,” 中華科技大學電子工程研究所碩士班碩士論文, 台北市, 2015.
[35] A. ElKhalfi, E. M. Ech-chamikh, Y. Ijdiyaou, M. Azizan, A. Essafti, L. Nkhaili, A. Outzourhit.,“Infrared and Raman Study of Amorphous Silicon Carbide Thin Films Deposited by Radiofrequency Cosputtering,” Spectrosc. Lett., vol. 47, no. 5, pp. 392–396, 2014.
[36] W. H. Weber and R. (Roberto)Merlin, “Raman scattering in materials science, ” Springer, 2000.
[37] J. A. Freitas, Jr. and W. J. Moore, “Optical Studies of Undoped and Doped Wide Bandgap Carbide and Nitride Semiconductors,” Brazilian J. Phys., vol. 28, no. 1, pp. 12–18, 1998.
[38] M. Science, “Transformation from amorphous to nano- crystalline SiC thin films prepared by HWCVD technique without Transformation from amorphous to nano-crystalline SiC thin films prepared by HWCVD technique without hydrogen dilution,” vol. 38, no. September, pp. 1333–1338, 2016.
[39] B. P. Swain and R. O. Dusane, “Multiphase structure of hydrogen diluted a-SiC:H deposited by HWCVD,” Mater. Chem. Phys., vol. 99, no. 2–3, pp. 240–246, 2006.
[40] E. Quiroga-González, J. Carstensen, C. Glynn, C. O’Dwyer, and H.Föll, “Pore size modulation in electrochemically etched macroporous p-type silicon monitored by FFT impedance spectroscopy and Raman scattering,” Phys. Chem. Chem. Phys., vol. 16, no. 1, pp. 255–263, 2014.
[41] 謝孟廷, “以鋁矽/金矽合金與石墨之共蒸鍍來製備碳化矽之研究.” 台灣科技大學化學工程研究所碩士班碩士論文. 台北市. 2018.
[42] R. W. Olesinski and G. J. Abbaschian, “The Cu−Si (Copper-Silicon) system,” Bull. Alloy Phase Diagrams, vol. 7, no. 2, pp. 170–178, 1986.
[43] R. W.Olesinski, A. B.Gokhale, and G. J.Abbaschian, “The Ag-Si (Silver-Silicon) system,” Bull. Alloy Phase Diagrams, vol. 10, no. 6, pp. 635–640, Dec.1989.
[44] 黃英碩, “表面原子分子動態行為的研究.”
取自:http://daais.sinica.edu.tw/download/jriaaward/32.pdf
[45] K. D. Leedy and J. M. Rigsbee, “ Microstructure of radio frequency sputtered Ag1− x Six alloys ,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 14, no. 4, pp. 2202–2206, 2002.
[46] R. Reitano and P.Baeri, “Pulsed laser deposition of crystalline silicon carbide films,” Europhys. Lett., vol. 43, no. 5, pp. 565–571, 1998.
[47] Y. Sun, T. Miyasato, and J. K.Wigmore, “Characterization of excess carbon in cubic SiC films by infrared absorption,” J. Appl. Phys., vol. 85, no. 6, pp. 3377–3379, 1999.
[48] S. Sorieul, J. M.Costantini, L. Gosmain, L. Thomé, and J. J.Grob, “Raman spectroscopy study of heavy-ion-irradiated α-SiC,” J. Phys. Condens. Matter, vol. 18, no. 22, pp. 5235–5251, 2006.
[49] N. Mattern, R. Seyrich, L. Wilde, C. Baehtz, M. Knapp, and J.Acker, “Phase formation of rapidly quenched Cu-Si alloys,” J. Alloys Compd., vol. 429, no. 1–2, pp. 211–215, 2007.

QR CODE