簡易檢索 / 詳目顯示

研究生: 洪偉軒
Wei-Hsuan Hung
論文名稱: 基於分層自適應有限時間控制的全向驅動服務機器人之軌跡設計與實現
Tracking Design and Implementation of Omnidirectional Driven Service Robot Using Hierarchical Adaptive Finite-Time Control
指導教授: 黃志良
Chih-Lyang Hwang
口試委員: 施慶隆
Ching-Long Shih
陳博現
Bor-Sen Chen
游文雄
Wen-Shyong Yu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 66
中文關鍵詞: 全向驅動服務機器人階層自適應有限時間控制時變地形障礙物避障
外文關鍵詞: Omnidirectional driven service robot, Hierarchical adaptive finite-time control, Time-varying terrain, Obstacle avoidance
相關次數: 點閱:251下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 能夠同時平移與旋轉是全向移動服務機器人(ODSR)的有利特色,所以在人機協作(例如,語音命令控制,人類跟隨控制)能夠更可靠以及更能夠達到我們所需要的需求。 ODSR的路徑追蹤模型包括機構運動學,每個車輪摩擦的機械動力學以及ODSR和世界坐標之間的轉換以及馬達動力學。為了在有限時間內讓ODSR追蹤想要的姿態,因此設計了自適應有限時間虛擬想要路徑(AFTVDP)。為了使直接輸出在有限時間內追蹤AFTVDP,因此設計了自適應有限時間追蹤控制(AFTTC)以執行高頻運動(例如:時變地面條件、初始姿態未在追蹤軌跡上)。
    換言之,本論文所提出的分層自適應有限時間控制(HAFTC)包含AFTVDP和AFTTC。最後透過實驗來驗證了所提出控制的有效性和強健性。


    Advantageous feature of omnidirectional driven service robot (ODSR), i.e., simultaneous translation and rotation, the human-robot collaborations (e.g., voice command control, human following control) are more reliable and satisfactory. The path tracking model of an ODSR includes mechanism kinematics, mechanical dynamics with friction of each wheel and transformation between ODSR and world coordinates, and motor dynamics. To track the desired pose of ODSR in finite time, the adaptive finite-time virtual desired path (AFTVDP) is designed. To make the direct output track the AFTVDP in finite time, an adaptive finite-time tracking control (AFTTC) is designed to execute high frequency motions (e.g., time-varying ground conditions, initial misalignment pose).
    In summary, the proposed hierarchical adaptive finite-time control (HAFTC) contains AFTVDP, and AFTTC. Finally, experiment validates the effectiveness and robustness of the proposed control.

    摘要 Abstract 目錄 圖目錄 表目錄 第一章 緒論 1-1 研究背景 1-2 相關文獻 第二章 實驗架構 2.1 系統架構 2.2 數學模型 2.3 問題描述 第三章 分層自適應有限時間控制 3.1 數學初步證明 3.1.1 有限時間穩定性 3.1.2 兩個切換曲面 3.1.3 間接和直接不確定模型 3.1.4 自適應性法則 3.2 自適應有限時間虛擬想要路徑 3.3 自適應有限時間追蹤控制 3.4 HAFTC演算法 第四章 實驗結果與討論 4.1 實驗結果 4.2 結果討論 第五章 結論與未來研究 參考文獻 附錄

    [1] W. Chung, H. Kim, Y. Yoo, C. Moon, and J. Park, “The detection and following of human legs through inductive approaches for a mobile robot with a single laser range finder,” IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3156–3166, Aug. 2012.
    [2] L. Li, S. Yan, X. Yu, Y. K. Tan, and H. Li, “Robust multiperson detection and tracking for mobile service and social robots,” IEEE Trans. Syst., Man, Cybern., Part B, vol. 42, no. 5, pp. 1398-1412, Oct. 2012.
    [3] J. S. Hu, J. J Wang, and D. M. Ho, “Design of sensing system and anticipative behavior for human following of mobile robots,” IEEE Trans. Ind. Electron., vol. 61, no. 4, pp. 1916-1927, Apr. 2014.
    [4] R. Tasaki, M. Kitazaki, J. Miura, and K. Terashima, “Prototype design of medical round supporting robot “Terapio” IEEE ICRA-2015, pp. 829-834, Seattle, Washington, USA, May 26-30, 2015.
    [5] K. Zinchenko, C.-Y. Wu, and K.-T. Song, “A study on speech recognition control for a surgical robot,” IEEE Trans. Ind. Inform., vol. 14, no. 2, pp. 607-617, Apr. 2017.
    [6] S. Anjum, M. S. Sheikh, and Dinesh R. Rotake, “An evolutionary approach for smart wheelchair system,” IEEE ICCSP-2015, pp. 1811-1815, 2015.
    [7] H. C. Huang, “SoPC-based parallel ACO algorithm and its application to optimal motion controller design for intelligent omnidirectional mobile robots,” IEEE Trans. Ind. Informatics, vol. 9, no. 4, pp. 1828-1838, Nov. 2013.
    [8] J. C. L. Barreto S., A. G. S. Conceic˜ao, C. E. T. D´orea, L. Martinez, and E. R. de Pieri, “Design and implementation of model-predictive control with friction compensation on an omnidirectional mobile robot,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 2, pp. 467-476, Apr. 2014.
    [9] H. Kim and B. K. Kim, “Online minimum-energy trajectory planning and control on a straight-line trajectory for three-wheeled omnidirectional mobile robots,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4771-4779, Sep. 2014.
    [10] R. Roy, L. Wang, and N. Simaan, “Modeling and estimation of friction, extension and coupling effects in multi-segment continuum robots,” IEEE/ASME Trans. Mechatronics, vol. 20, no. 2, pp. 909-920, Apr. 2017.
    [11] C.-L. Hwang, “Comparison of path tracking control of a car-like mobile robot with and without motor dynamics,” IEEE/ASME Trans. Mechatronics, vol. 21, no., 4, pp. 1801-1811, Aug. 2016.
    [12] D. Rotondo, V. Puig, F. Nejjari, and J. Romera, “A fault-hiding approach for the switching quasi-LPV fault-tolerant control of a four-wheeled omnidirectional mobile robot,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3932-3944, Jun. 2015.
    [13] C. Ren and S. Ma, “Generalized proportional integral observer based control of an omnidirectional mobile robot,” Mechatronics, vol. 28, pp. 36-44, 2015.
    [14] J. Yuan, F. Sun, and Y. Huang, “Trajectory generation and tracking control for double-steering tractor-trailer mobile robots with on-axle hitching,” IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7665-7675, Dec. 2016.
    [15] T. A. V. Teatro, J. M. Eklund, and R. Milman, “Nonlinear model predictive control for omnidirectional robot motion planning and tracking with avoidance of moving obstacles,” Candian J. of Electrical and Computer Engineering, vol. 37, no. 3, pp. 151-156, 2014.
    [16] M. A. A. Mamun, M. T. Nasir, and A. Khayyat, “Embedded system for motion control of an omnidirectional mobile robot,” IEEE Access, vol. 6, no. 6, pp. 6722-6739, 2018.
    [17] T. Terakawa, M. Komori, K. Matsuda, S. Mikami, “A novel omnidirectional mobile robot with wheels connected by passive sliding joints”, IEEE/ASME Trans. Mechatronics, to appear, 2018.
    [18] X. Dong, Y. Hua, Y. Zhou, Z. Ren, and Y. Zhong, “Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems,” ,” IEEE Trans. Autom. Sci. Eng., to appear, 2018.
    [19] W. Sun, S. Tang, H. Gao, and J. Zhao, “Two time-scale tracking control of nonholonomic wheeled mobile robots,” IEEE Trans. Contr. Syst. Technol., vol. 24, no. 6, pp. 2059-2069, Nov. 2016.
    [20] Q. Lu, Q.-L. Han, X. Xie, and S. Liu “A finite-time motion control strategy for odor source localization,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5419-540, Oct. 2014.
    [21] H. Wang, Z. Man, H. Kong, Y. Zhao, M. Yu, Z. Cao, J. Zheng, and M. T. Do, “Design and implementation of adaptive terminal sliding-mode control on a steer-by -wire equipped road vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 9, pp. 5774-5785, Sep. 2016.
    [22] Y. Wang, L. Gu, Y. Xu, and X. Cao, “Practical tracking control of robot manipulators with continuous fractional-order nonsingular terminal sliding mode,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6194-6204, Oct. 2016.
    [23] S. Ding, L. Liu, and W. X. Zheng, “Sliding mode direct yaw-moment control design for in-wheel electric vehicles,” IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6752-6762, Aug. 2017.
    [24] B. Tian, L. Liu, H. Lu, Z Zuo, Q. Zong, and Y. Zhang, “Multivariable finite time attitude control for quadrotor UAV: theory and experimentation,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2567-2577, Mar. 2018.
    [25] S. L. Han, “Prescribed consensus and formation error constrained finite-time sliding mode control for multi-agent mobile robot systems”, IET, Contr. Theory & Applica., vol. 12, no. 2, pp. 282-290, 2018.
    [26] C. Yang, Y. Jiang, W. He, J. Na, Z. Li, and B. Xu, “Adaptive parameter estimation and control design for robot manipulators with finite-time convergence,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 8112-8123, Oct. 2018.
    [27] J. Mishra, L. Wang, Y. Zhu, X. Yu, and Mahdi Jalili, “A novel mixed cascade finite-time switching control design for induction motor,” IEEE Trans. Ind. Electron., to appear, 2018.
    [28] C.-L. Hwang and John Y. Hung, “Stratified adaptive finite-time tracking control for nonlinear uncertain generalized vehicle systems and its application,” IEEE Trans. Contr. Syst. Technol., to appear, 2018.
    [29] S. Aguilera-Marinovic, M. Torres-Torriti, and F. Auat-Cheein, “General dynamic model for skid-steer mobile manipulators with wheel-ground interactions,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 1, pp. 433-444, Feb. 2017.
    [30] N. Filipe, A. Valverd, and P. Tsiotras, “Pose tracking without linear and angular-velocity feedback using dual quaternions,” IEEE Trans. Aerospace and Electronic Syst., vol. 52, no. 1, pp. 414-422, Feb. 2016.
    [31] J. Yao, W. Deng, and Z. Jiao, “RISE-based adaptive control of hydraulic systems with asymptotic tracking,” IEEE Trans. Autom. Sci. Eng., vol. 14, no. 3, pp. 1524- 1531, Jul. 2017.
    [32] F. Wang, B. Chen, X. Liu, and C. Lin, “Finite- time adaptive fuzzy tracking control design for nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 26, no. 3, pp. 1207-1216, Jun. 2018.

    QR CODE