簡易檢索 / 詳目顯示

研究生: 郭修安
Hsiu - An Kuo
論文名稱: 矽摻雜石墨烯及其蕭特基光感測特性
Si-doped Graphene for Schottky Photodetector
指導教授: 周賢鎧
Shyankay Jou
口試委員: 蔡豐羽
Feng-Yu Tsai
王秋燕
Chiu-Yen Wang
施文欽
Wen-Ching Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 124
中文關鍵詞: 石墨烯蕭特基光感測器
外文關鍵詞: Graphene, Schottky photodetector
相關次數: 點閱:341下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為兩部分,第一部分為以聚碳矽烷作為前驅物以化學氣相沉積法製備矽摻雜石墨烯,並以石墨烯作為比較,探討其性質是否不同。我們以拉曼光譜、TEM、XPS、UV-Vis分析其材料特性,在拉曼光譜中的分析中,我們發現了在石墨烯(pristine graphene , PG)及矽摻雜石墨烯(Si-doped graphene, SiG)中,存在著些差異,SiG之D-band強度非常高,且G-band的附近出現一支側峰,以及強度下降的2D-band,這些性質差異應可歸因於矽摻雜入石墨烯中,造成晶格失序所引起的缺陷。
    在TEM的分析中,我們仍可發現一些PG與SiG的性質差異,從HRTEM中可清楚地看到石墨烯之蜂巢狀排列,以及其倒晶格空間可觀察到兩個六角環,分別對應到的是{10‾1 0}及{11‾2 0}面,但更進一步的討論其角度及晶面間距,發現角度非60°,且晶面間距大於石墨烯之理論值,推測是Si摻雜所造成之現象,接著我們更進一步地,以XPS確認其成分組成,確認其含有矽的存在,矽的摻雜量約為6.86 %。
    第二部分為將矽摻雜石墨烯以及石墨烯應用於蕭特基光感測器之上,利用變溫電性量測系統確認其符合蕭特基元件中的熱離子發射模型,並且SiG與PG之蕭特基能障分別為0.83 eV與0.79 eV,由蕭特基能障可推算出SiG與PG之功函數分別為4.88 eV與4.84 eV,而在溫度為298K時理想因子為1.9與2.6。
    接著量測其光感測特性,發現元件具有Self-Power之特性,即為元件可在無外加電壓下操作,經由量測過後,SiG/n-Si蕭特基光感測器的元件效能皆大於PG/n-Si蕭特基光感測器,元件對於紫外光(UV)至近紅外光(NIR)波段的光皆有響應。更進一步地,將元件經過350 °C在100 sccm之10% H2 + 90% Ar之混合氣氛中,退火2小時後,元件的光增益有著明顯的提升。SiG/n-Si蕭特基光感測器之響應度為0.232 A/W,上升/下降時間為2.1 ms/33.9 ms、ON/OFF ratio為~104。
    並探討改變入射光強度對於響應度的變化,在入射光強度為~ 8 μW的情形下,元件之響應度提升為1.32 A/W,顯示元件對於弱光也有很好的響應。


    This study can be separated into two major parts. Firstly, we synthesized silicon doped graphene (SiG) from polycarbosilane by chemical vapor deposition (CVD) and compared material properties with pristine graphene (PG) which was synthesized by CVD process too.
    Raman spectroscopy, TEM, XPS, and UV-Vis were employed to characterize the structure and properties of PG and SiG. Raman spectrum of SiG shows the stronger intensity of D-band and the appearance of a shoulder peak near G-band. This was obvious caused by defect that might be attributed to Si doping to graphene leading deformed lattice structure of graphene.
    During TEM characterization, we found some different appearance of SiG from PG. We found two crystal planes {10‾1 0} and {11‾2 0} corresponding to two hexagonal rings. We analysed the angle and d-spacing of SiG where we found that the angle was not 60˚ and the d-spacing was larger than PG and we suggested the reason is Si atom disturbed the lattice structure. Furthermore, we used XPS to confirm the existence of Si and, the content of Si was 6.86 %.
    Secondly, we fabricated PG/n-Si Schottky photodetector and SiG/n-Si Schottky photodetector. We measured the I-V curve at different temperatures to assure that our device follows thermionic emission model, and Schottky barrier hight of SiG/n-Si Schottky photodetector is 0.83 eV, higher than that of 0.79 eV of PG/n-Si Schottky photodetector. From Schottky barrier height we could calculate work fuction. The work fuction of SiG and PG were 4.84 eV and 4.88 eV. At 298 K ideal factor of PG/n-Si Schottky photodetector and SiG/n-Si Schottky photodetector were 2.6 and 1.9, respectively.
    SiG/n-Si Schottky photodetector performs better than PG/n-Si Schottky photodetector. Our device can response toward a broad incident light range from 365 nm to 852 nm. Furthermore, The devices were annealed at 350 °C in 10% H2 + 90% Ar atmosphere and the flow rate of gas is 100 sccm for 2 hours. For SiG/n-Si Schottky photodetector, responsivity, rising/falling time and ON/OFF ratio were 0.232 A/W, 2.1 ms/33.9 ms and ~104, respectively. We also observed an increase in responsivity of SiG/n-Si Schottky photodetector up to 1.32 A/W, when we decrease the intensity of incident light to ~ 8 μW/cm2.

    摘要 I Abstract III 致謝 V 第一章、 緒論 1 1.1 石墨烯的歷史 1 1.2 石墨烯的結構與性質 2 第二章、 文獻回顧 6 2.1 石墨烯的製備方法 6 2.1.1 機械剝離法(mechanical exfoliation) 6 2.1.2 磊晶成長法(epitaxial growth) 7 2.1.3 氧化還原法(graphene oxide reduction) 8 2.1.4 化學氣相沉積法(chemical vapor deposition, CVD) 8 2.1.5 固態碳源成長法 16 2.2 石墨烯之拉曼光譜分析 18 2.3 摻雜之石墨烯 20 2.4 石墨烯於蕭特基光感測器之應用 30 2.5 研究動機 47 第三章、 實驗儀器與實驗方法 48 3.1 石墨烯以及矽摻雜石墨烯的製備 48 3.1.1 實驗流程 48 3.1.2 實驗步驟 48 3.2 實驗裝置及分析設備 56 3.2.1實驗裝置及分析設備簡表 56 3.2.2 化學氣相沉積系統 57 3.2.3 顯微拉曼光譜儀 58 3.2.4 場發射掃描式電子顯微鏡 59 3.2.5 高解析度場發射穿透式電子顯微鏡 60 3.2.6 X射線光電子能譜分析儀 61 3.2.7 紫外光可見光光譜儀 62 3.2.8 光感測器量測系統 63 3.2.9 磁控式濺鍍系統 64 第四章、 結果與討論 66 4.1 石墨烯與矽摻雜石墨烯之性質討論 66 4.1.1 TEM結果分析 66 4.1.2 拉曼光譜結果分析 75 4.1.3 XPS分析 76 4.1.4 UV-ViS穿透度分析 82 4.2 石墨烯與矽摻雜石墨烯之蕭特基光感測器分析 82 4.2.1 蕭特基二極體之變溫分析 83 4.2.2蕭特基二極體應用於光感測器元件分析 88 第五章、結論 112 第六章、未來展望 114 第七章、參考文獻 115 附錄 124

    [1] S. Ijima, "Helical microtubes of graphitic carbon", Nature 1991, 354 (7), 56-58.
    [2] A. K. Geim. and K. S. Novoselov., "The rise of graphene", Nature Materials 2007, 6 (3), 183-191.
    [3] K. S. Novoselov, A. K. Geim., S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science 2004 (5696), 306, 666-669.
    [4] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T J. Booth, S. Roth, "The structure of suspended graphene sheets", Nature 2007, 446 (7131), 60-3.
    [5] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, "The electronic properties of graphene", Reviews of Modern Physics 2009, 81 (1), 109-162.
    [6] X Li, W. W. Cai , J. An, S. Kim, J. Nah, D. Yang, R, Piner, A. V., I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff., "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils", Science 2009 (5932), 324, 1312-1314.
    [7] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N.Lau, "Superior Thermal Conductivity of Single-Layer Graphene", Nano Letters 2008, 8 (3), 902-907.
    [8] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, "Ultrahigh electron mobility in suspended graphene", Solid State Communications 2008, 146 (9-10), 351-355.
    [9] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes", Nature 2009, 457 (7230), 706-710.
    [10] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, "Fine Structure Constant Defines Visual Transparency of Graphene", Science 2008 (5881), 320, 1308.
    [11] C.Lee, X. Wei, J.W. Kysar, J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene", Science 2008, 321 (5887), 385-388.
    [12] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, S. Seal, "Graphene based materials: Past, present and future", Progress in Materials Science 2011, 56 (8), 1178-1271.
    [13] C. Berger, Z. Song , X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, "Electronic Confinement and Coherence in Patterned Epitaxial Graphene", Science 2006, 312 (5777), 1191-1196.
    [14] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, Alfred, Kleinhammes, Y. Jia, Y.Wu, S. T. Nguyen, R. S. Ruoff, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide", Carbon 2007, 45 (7), 1558-1565.
    [15] C. Nethravathi, M. Rajamathi, "Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide", Carbon 2008, 46 (14), 1994-1998.
    [16] X. Fan, W. Peng, Y. Li, X. Li, S.Wang, G. Zhang, F. Zhang, "Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route toGraphene Preparation", Advanced Materials 2008, 20 (23), 4490-4493.
    [17] B. J. Kang, J. H. Mun, C. Y. Hwang, B. J. Cho, "Monolayer graphene growth on sputtered thin film platinum", Journal of Applied Physics 2009, 106 (10), 104309.
    [18]P. W. Sutter J. -I. Flege, E. A. Sutter, "Epitaxial graphene on ruthenium", Nature Materials 2008, 7 (5), 406-411.
    [19] J. Coraux A. T. N’Diaye, C. Busse, T. Michely, "Structural Coherency of Graphene on Ir(111)", Nano Letters 2008, 8 (2), 565-570.
    [20] M. Zheng, K. Takei, B. Hsia, H. Fang, X. Zhang, N. Ferralis, H. Ko, Y.-L. Chueh, Y. Zhang, R. Maboudian, A. Javey, "Metal-catalyzed crystallization of amorphous carbon to graphene", Applied Physics Letters 2010, 96 (6), 063110.
    [21] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, S. S. Pei, "Graphene segregate on Ni surfaces and transferred to insulators", Applied Physics Letters 2008, 93 (11), 113103.
    [22] J. H. Mun, C. Hwang, S. K. Lim, B. J. Cho, "Optical reflectance measurement of large-scale graphene layers synthesized on nickel thin film by carbon segregation", Carbon 2010, 48 (2), 447-451.
    [23] S. Lee, K. Lee, Z. Zhong, "Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition", Nano Letters 2010, 10 (11), 4702-4707.
    [24] X. Li, W.Cai., L. Colombo, R. S. Ruoff, "Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling", Nano Letters 2009, 9 (12), 4268-4272.
    [25] S. Bae, H. Kim., Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, R. Kim, Y.-J. Song, Y. –J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, S. Iijima, "Roll-to-roll production of 30-inch graphene films for transparent electrodes", Nature 2010, 5 (8), 574-578.
    [26] Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J. M. Tour, "Growth of graphene from solid carbon sources", Nature 2010, 468 (7323), 549-552.
    [27] Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, X. Zhai, C. Zeng, Z. Li, J. Yang, J. Hou, "Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources", ACS Nano 2011, 5 (4), 3385-3390.
    [28] G. Ruan, Z. Sun, Z. Peng, J. M. Tour, "Growth of graphene from food, insects, and waste", ACS Nano 2011, 5 (9), 7601-7.
    [29] S. Reich C. Thomsen, "Raman spectroscopy of graphite", Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences 2004, 362 (1824), 2271-2288.
    [30] L. M. Malard, M. A. Pimenta, G. Dresselhaus , M. S. Dresselhaus, "Raman spectroscopy in graphene", Physics Reports 2009, 473 (5-6), 51-87.
    [31] W. Wu, Z. Liu, L. A. Jauregui, Q. Yu, R. Pillai, H. Cao, J. Bao, Y. P. Chen, S.-S. Pei, "Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing", Sensors and Actuators B: Chemical 2010, 150 (1), 296-300.
    [32] A. C. Ferrari, "Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects", Solid State Communications 2007, 143 (1-2), 47-57.
    [33] R. Lv, M. Terrones, "Towards new graphene materials: Doped graphene sheets and nanoribbons", Materials Letters 2012, 78 (7), 209-218.
    [34]Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, F. Wang, "Direct observation of a widely tunable bandgap in bilayer graphene", Nature 2009, 459 (7248), 820-3.
    [35] J. E. Santos, N. M. R. Peres, J. M. B. Lopes dos Santos, A. H. Castro Neto, "Electronic doping of graphene by deposited transition metal atoms", Physical Review B 2011, 84 (8), 1-16.
    [36] R. H. Miwa, T. M. Schmidt, W. L. Scopel, A. Fazzio, "Doping of graphene adsorbed on the a-SiO2 surface", Applied Physics Letters 2011, 99 (16), 163108.
    [37] X. Wang X. L., L. Zhang, Y. Yoon, P. K. Webber, H. Wang, J. Guo, H. Dai, "N-Doping of Graphene Through Electrothermal Reactions with Ammonia", Science 2009, 324 (5928), 768-771.
    [38] W. J. Yu, L. Liao, S. H. Chae, Y. H. Lee, X. Duan, "Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping", Nano Letters 2011, 11 (11), 4759-4763.
    [39] P. A. Denis, "Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur", Chemical Physics Letters 2010, 492 (4-6), 251-257.
    [40] R. Lv, Q. Li, A. R. Botello-Mendez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A. L. Elias, R. Cruz-Silva, H. R. Gutierrez, Y. A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J. C. Charlier, M. Pan, M. Terrones, "Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing", Scientific Reports 2012, 2 (586), 1-8.
    [41] J. Han, L. L. Zhang, S. Lee, J. Oh, K. S. Lee, J. R. Potts, J. Ji, X. Zhao, R. S. Ruoff, S. Park, "Generation of B‑Doped Graphene Nanoplatelets Using a Solution Process and Their Supercapacitor Applications", ACS Nano 2013, 7 (1), 19-27.
    [42] L. Zhao, M. Levendorf, S. Goncher, T. Schiros, L. Palova, A. Zabet-Khosousi, K. T. Rim, C. Gutierrez, D. Nordlund, C. Jaye, M. Hybertsen, D. Reichman, G. W. Flynn, J. Park, A. N. Pasupathy, "Local atomic and electronic structure of boron chemical doping in monolayer graphene", Nano Lett 2013, 13 (10), 4659-4665.
    [43] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, "Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties", Nano Letters 2009, 9 (5), 1752-1758.
    [44] Some S.; Kim J.; Lee K.; Kulkarni A.; Yoon Y.; Lee S.; Kim T.; Lee H., "Highly air-stable phosphorus-doped n-type graphene field-effect transistors", Advanced Materials 2012, 24 (40), 5481-5486.
    [45] H. Gao, Z. Liu, L. Song, W. Guo, W. Gao, L. Ci, A. Rao, W. Quan, R. Vajtai, P. M. Ajayan, "Synthesis of S-doped graphene by liquid precursor", Nanotechnology 2012, 23 (27), 275605.
    [46] S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, Z. J. Xu , "Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells", Nanoscale 2015, 8 (1), 226-232.
    [47] R. Lv, M. C. dos Santos, C. Antonelli, S. Feng, K. Fujisawa, A. Berkdemir, R. Cruz-Silva, A. L. Elias, N. Perea-Lopez, F. Lopez-Urias, H. Terrones, M. Terrones, "Large-area Si-doped graphene: controllable synthesis and enhanced molecular sensing", Advanced Materials 2014, 26 (45), 7593-7599.
    [48] Z. Wang, P. Li, Y. Chen, J. Liu, W. Zhang, Z. Guo, M. Dong, Y. Li, "Synthesis, characterization and electrical properties of silicon-doped graphene films", The Journal of Physical Chemistry C 2015, 3 (24), 6301-6306.
    [49] X. Wang, L. Zhi, K. Mullen, "Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells" Nano Letters 2008, 8 (1), 323-327.
    [50] C. –L. Hsu, C.-Te. Lin, J.-H. Huang, C.-W. Chu, K.-H. Wei, L.-J. Li, "Layer-by Layer Graphene/TCNQ Stacked Films as Conducting Anodes for Organic Solar Cells" ACS Nano 2012, 6 (6), 5031-5039.
    [51] X. Wang, D. Li, Q. Zhang, L. Zou, F. Wang, J. Zhou, Z. Zhang, "Study on the graphene/silicon Schottky diodes by transferring graphene transparent electrodes on silicon", Thin Solid Films 2015, 592 (6), 281-286.
    [52] C. C. Chen, M. Aykol, C. C. Chang, A. F. Levi, S. B. Cronin, "Graphene-silicon Schottky diodes", Nano Lett 2011, 11 (5), 1863-1867.
    [53] Z. Zhang, Y. Guo, X. Wang, D. Li, F. Wang, S. Xie , "Direct Growth of Nanocrystalline Graphene/Graphite Transparent Electrodes on Si/SiO2 for Metal-Free Schottky Junction Photodetectors", Advanced Functional Materials 2014, 24 (6), 835-840.
    [54] C. Xie, P. Lv, B. Nie, J. Jie, X. Zhang, Z. Wang, P. Jiang, Z. Hu, L. Luo, Z. Zhu, L. Wang, C. Wu , "Monolayer graphene film/silicon nanowire array Schottky junction solar cells", Applied Physics Letters 2011, 99 (13), 133113.
    [55] T. Feng, D. Xie, Y. Lin, Y. Zang, T. Ren, R. Song, H. Zhao, H. Tian, X. Li, H. Zhu, L. Liu, "Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate", Applied Physics Letters 2011, 99 (23), 233505.
    [56] X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, D. Wu, "Graphene-on-silicon Schottky junction solar cells", Advanced Materials 2010, 22 (25), 2743-2748.
    [57] X. An, F. Liu, Y. J. Jung, S. Kar, "Tunable graphene-silicon heterojunctions for ultrasensitive photodetection", Nano Letters 2013, 13 (3), 909-916.
    [58] L. Zeng, C. Xie, L. Tao, H. Long, C. Tang, Y. H. Tsang, J. Jie, "Bilayer graphene based surface passivation enhanced nano structured self-powered near-infrared photodetector", Optics Express 2015, 23 (4), 4839-4846.
    [59] D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W. P. Hu, W. Chen, "Surface Transfer Doping-Induced, High-Performance Graphene/Silicon Schottky Junction-Based, Self-Powered Photodetector", Small 2015, 11 (37), 4829-4836.
    [60] X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, Y. Fang, "High Detectivity Graphene-Silicon Heterojunction Photodetector", Small 2016, 12 (5), 595-601.
    [61] M. E. Ayhan, G. Kalita, M. Kondo, M. Tanemura, "Photoresponsivity of silver nanoparticles decorated graphene–silicon Schottky junction", RSC Advances 2014, 4 (51), 26866.
    [62] P. Lv, X. Zhang, X. Zhang, W. Deng, J. Jie, "High-Sensitivity and Fast-Response Graphene/Crystalline Silicon Schottky Junction-Based Near-IR Photodetectors", IEEE Electron Device Letters 2013, 34 (10), 1337-1339.
    [63] G. Li, L. Liu, G. Wu, W. Chen, S. Qin, Y. Wang, T. Zhang, "Self-Powered UV-Near Infrared Photodetector Based on Reduced Graphene Oxide/n-Si Vertical Heterojunction", Small 2016, 6 (7), 1-8.
    [64] D. J. Gardiner, et.al, Practical Raman spectroscopy, Springer-Verlag:Berlin, NewYork 1989.
    [65] D. J. O'connor B. A. S., Surface Analysis Methods in Materials Science, Springer, 2nd Edirtion, New York, U.S.A 2003.
    [66] B. D. Cullity, S. R. S., Elements of X-Ray Diffraction, Pretice Hall, U.S.A 2001.
    [67] A. Delamoreanu, C. Rabot, C. Vallee, A. Zenasni, "Wafer scale catalytic growth of graphene on nickel by solid carbon source", Carbon 2014, 66 (1), 48-56.
    [68] J. H. Warner, F. Schaffel, M. Rummeli, A. Bachmatiuk, Graphene: Fundamentals and emergent applications, Elsevier, U.S.A 2013
    [69] M. -S. Kim, Understanding Organic Photovoltaic Cells: Electrode Nanostructure, Reliability, and Performance , The University of Michigan, 2009
    [70] A. Moliton, J.-M. Nunzi, "How to model the behaviour of organic photovoltaic cells", Polymer International 2006, 55 (6), 583-600.
    [71] L. Yang, X. Yu, W. Hu, X. Wu, Y. Zhao, D. Yang, "An 8.68% efficiency chemically-doped-free graphene-silicon solar cell using silver nanowires network buried contacts", ACS Appl Mater Interfaces 2015, 7 (7), 4135-41.

    QR CODE