簡易檢索 / 詳目顯示

研究生: 林均泰
CHUN-TAI LIN
論文名稱: 採用寬能隙元件及整合型變壓器實現雙向隔離漣波消除雙主動橋式直流/直流轉換器
Bidirectional Isolated Ripple Cancelling Dual Active Bridge DC-DC Converter Using Wide Bandgap Devices with an Integrated Transformer
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 邱煌仁
Huang-Jen Chiu
劉益華
Yi-Hua Liu
劉宇晨
Yu-Chen Liu
張佑丞
YU-CHENG CHANG
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 74
中文關鍵詞: 零電壓切換整合式變壓器雙向隔離漣波消除
外文關鍵詞: zero-voltage switching, Integrated transformer, Bidirectional isolated ripple cancelling
相關次數: 點閱:177下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出主旨為研究整合式變壓器應用於雙向隔離漣波消除雙主動橋式直流/直流轉換器之研製。此架構具有雙向功率潮流且相較於傳統相移調變控制方式其控制複雜性較低。此架構也具有電氣隔離及零電壓切換的優勢。本論文提出了一整合式的鐵心結構,變壓器結構進行分析,探討不同的繞組方式以及鐵心的優化設計。達到透過鐵心及繞組設計,實現整合式漏感之變壓器。在此論文也會透過ANSYS磁性模擬軟Maxwell來模擬驗證電路架構,確認模擬與設計理論相符。本電路架構也採用寬能隙元件作為電路中的主功率開關,用以提升高頻操作下系統的轉換效率。本論文最終達成輸入電壓400 V、輸出電壓400 V、輸出瓦數1 kW、切換頻率500 kHz。


    The main purpose of this paper is to study the development of an integrated transformer for bidirectional isolation ripple cancellation dual active bridge DC/DC converter. This architecture has bidirectional power flow and lower control complexity than traditional phase shift modulation control methods. This architecture also has the advantages of electrical isolation and zero voltage switching. This paper proposes an integrated iron core structure, analyzes the structure of the transformer, discusses the different winding arrangements and the optimized design of the iron core, and achieves an integrated leakage inductance transformer through the design of the iron core and winding. The ANSYS magnetic simulation software Maxwell will also be used to simulate and verify the circuit architecture to confirm that the simulation is consistent with the design theory. This circuit architecture uses a wide bandgap element as the main power switch in the circuit to improve the system's conversion efficiency under high-frequency operation. This thesis finally reached a converter with an input voltage of 300 V, an output voltage of 300 V, an output power of 750 W, a switching frequency of 500 kHz.

    摘要 Abstract 誌謝 目錄 圖索引 表索引 第一章 緒論 1.1 研究動機與目的 1.2 論文內容大綱 第二章 電路動作原理 2.1 消除漣波雙主動半橋轉換器動作原理 2.2 變壓器繞組跨壓推導 2.3 電壓轉移函數推導 第三章 變壓器結構分析 3.1 可調式漏感基本概念 3.2 電路規格與元件設計 3.3 可調式漏感繞組分析 3.4 電路模擬 第四章 實作驗證 4.1 實體電路 4.2 實測波形 第五章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻

    [1] Ching-Shan Leu and Pin-Yu Huang, “Current ripple reduction power conversion circuits,” U.S. Patent 8,259,469 B2, Sep. 4, 2012.
    [2] Ching-Shan Leu and Pin-Yu Huang, “Near zero current-ripple inversion or rectification circuits,” U.S. Patent 8,665,616 B2, Mar. 4, 2014.
    [3] Ching-Shan Leu, Pin-Yu Huang and Bo-Chih Lin, “A novel Taiwan Tech Multi-Level Converter (TMC) for high-voltage input power conversion applications,” 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), Kaohsiung, 2017, pp. 270-274, doi: 10.1109/IFEEC.2017.7992049.
    [4] Pin-Yu Huang, Takahiro Ohta, Makoto Fujii, and Yuichi Kado, “Bidirectional Isolated Ripple Cancel Dual Active Bridge DC-DC Converter,” U.S. Patent 8,259,469 B2, Sep. 4, 2012.
    [5] L. Xue, Z. Shen, D. Boroyevich, P. Mattavelli and D. Diaz, “Dual Active Bridge-Based Battery Charger for Plug-in Hybrid Electric Vehicle With Charging Current Containing Low Frequency Ripple,” in IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 7299-7307, Dec. 2015, doi:10.1109/TPEL.2015.2413815.
    [6] L. Roggia, L. Schuch, J. E. Baggio, C. Rech and J. R. Pinheiro, “Integrated Full-Bridge-Forward DC–DC Converter for a Residential Microgrid Application,” in IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1728-1740, April 2013, doi:10.1109/TPEL.2012.2214061.
    [7] J. Everts, F. Krismer, J. Van den Keybus, J. Driesen and J. W. Kolar, “Optimal ZVS Modulation of Single-Phase Single-Stage Bidirectional DAB AC–DC Converters,” in IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 3954-3970, Aug. 2014, doi:
    10.1109/TPEL.2013.2292026.
    [8] H. van Hoek, M. Neubert and Rik W. De Doncker, “Enhanced Modulation Strategy for a Three-Phase Dual Active Bridge-Boosting Efficiency of an Electric Vehicle Converter,” in IEEE Transactions on Power Electronics, vol. 28, no. 12, pp. 5499-5507, Dec. 2013, doi: 10.1109/TPEL.2013.2251905.
    [9] F. Krismer and J. W. Kolar, “Accurate Power Loss Model Derivation of a High-Current Dual Active Bridge Converter for an Automotive Application,” in IEEE Transactions on Industrial Electronics, vol. 57, no. 3, pp. 881-891, March 2010, doi: 10.1109/TIE.2009.2025284.
    [10] R. T. Naayagi, A. J. Forsyth and R. Shuttleworth, “High-Power Bidirectional DC–DC Converter for Aerospace Applications,” in IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4366-4379, Nov. 2012, doi: 10.1109/TPEL.2012.2184771.
    [11] H. Akagi, S. Kinouchi, and Y. Miyazaki, “Bidirectional isolated dual-active-bridge (DAB) DC-DC converters using 1.2 kV 400 A SiC-MOSFET dual modules,” in CPSS Transactions on Power Electronics and Applications, vol. 1, no. 1, pp. 33–40, Dec. 2016.
    [12] A. Vieira, L. Mazza, F. Antunes, and D. Oliveira, “Bidirectional dual-active-bridge DC-DC converter for vehicle-to-grid applications in DC microgrids,” 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE), Niteroi, 2018, pp. 1–6.
    [13] S. Yao, G. Liu, Y. Zhao, Z. Zhu, and B. Zhao, “Optimal control strategy of dual-active-bridge converter for battery energy storage system,” 2014 China International Conference on Electricity Distribution (CICED), Shenzhen, 2014, pp. 1220–1224.
    [14] S. Inoue and H. Akagi, “A Bidirectional Isolated DC–DC Converter as a Core Circuit of the Next-Generation Medium-Voltage Power Conversion System,” in IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 535-542, March 2007, doi:10.1109/TPEL.2006.889939.
    [15] N. A. Dung, H. Chiu, J. Lin, Y. Hsieh and Y. Liu, “Efficiency optimisation of ZVS isolated bidirectional DAB converters,” in IET Power Electronics, vol. 11, no. 8, pp. 1499-1506, 10 7 2018, doi: 10.1049/iet-pel.2017.0723.
    [16] M. N. Kheraluwala, R. W. Gascoigne, D. M. Divan and E. D. Baumann, “Performance characterization of a high-power dual active bridge DC-to-DC converter,” in IEEE Transactions on Industry Applications, vol. 28, no. 6, pp. 1294-1301, Nov.-Dec. 1992, doi: 10.1109/28.175280.
    [17] H. Bai and C. Mi, “Eliminate Reactive Power and Increase System Efficiency of Isolated Bidirectional Dual-Active-Bridge DC–DC Converters Using Novel Dual-Phase-Shift Control,” in IEEE Transactions on Power Electronics, vol. 23, no. 6, pp. 2905-2914, Nov. 2008, doi: 10.1109/TPEL.2008.2005103.
    [18] Z. Ouyang, O. C. Thomsen and M. A. E. Andersen, “The analysis and comparison of leakage inductance in different winding arrangements for planar transformer,” 2009 International Conference on Power Electronics and Drive Systems (PEDS), Taipei, 2009, pp. 1143-1148, doi: 10.1109/PEDS.2009.5385844.
    [19] P. L. Dowell, “Effects of eddy currents in transformer windings,” in Proceedings of the Institution of Electrical Engineers, vol. 113, no. 8, pp. 1387-1394, August 1966, doi: 10.1049/piee.1966.0236.
    [20] B. Li, Q. Li and F. C. Lee, “High-Frequency PCB Winding Transformer With Integrated Inductors for a Bi-Directional Resonant Converter,” in IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 6123-6135, July 2019, doi:10.1109/TPEL.2018.2874806.
    [21] Y. Liu, C. Chen, K. Chen, Y. Syu and N. A. Dung, “High-Frequency and High-Efficiency Isolated Two-Stage Bidirectional DC-DC Converter for Residential Energy Storage Systems,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, doi: 10.1109/JESTPE.2019.2953117.

    無法下載圖示 全文公開日期 2025/08/31 (校內網路)
    全文公開日期 2025/08/31 (校外網路)
    全文公開日期 2025/08/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE