簡易檢索 / 詳目顯示

研究生: 吳佳祐
Jia-You Wu
論文名稱: 以深度學習辨識之加工特徵進行自動化製程規劃
Automated Process Planning Using Machining Features Recognized from Deep Learning Models
指導教授: 林清安
Ching-An Lin
口試委員: 張復瑜
Fuh-Yu Chang
小林博仁
Hirohito Kobayashi
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 136
中文關鍵詞: 電腦輔助製程規劃特徵辨認深度學習刀具加工路徑CAD/CAM
外文關鍵詞: Computer aided process planning, Feature recognition, Deep learning, Cutting tool path, CAD/CAM
相關次數: 點閱:264下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

製程規劃是機械加工的一項重要工作,目前商用的電腦輔助製造軟體雖然具備完善功能,但需要擁有專業製程知識與加工經驗的人員進行設定,且繁瑣的操作流程使得此類軟體的操作效率低且入門門檻高,因此本論文著眼於自動化製程規劃系統之開發,首先使用深度學習技術自動化由3D幾何模型辨識出五種類別的加工特徵:圓孔特徵、口袋特徵、階梯特徵、盲槽特徵與通槽特徵,接著針對不同的加工特徵選用適當之加工刀具,然後安排合理之加工順序與加工工法,最後自動化產生刀具加工路徑。
本論文除了詳述如何使用經過訓練的深度學習模型進行加工特徵辨識、如何分析加工特徵之幾何資訊進行刀具選用、如何設定加工前處理及如何安排特徵之加工順序與加工工法,也透過Siemens NX的二次開發工具NXOpen建立一套自動化產生加工刀具路徑的電腦系統,並利用兩個3D CAD模型做為實例,驗證所開發系統的實用性。研究結果顯示此系統適用於多種加工特徵,能對特徵產生正確且合理的加工路徑,並大幅節省軟體操作時間。


Process planning plays a crucial role in mechanical machining. While commercial computer-aided manufacturing software offers comprehensive functionalities, it requires individuals with professional process knowledge and machining experience for proper configuration. Additionally, the software's complex operational procedures result in low efficiency and high entry barriers. Therefore, this thesis focuses on the development of an automated process planning system. Initially, deep learning techniques are employed to automatically recognize five types of machining features from 3D geometric models: hole features, pocket features, step features, blind slot features, and through slot features. Subsequently, suitable machining tools are selected for different machining features, followed by organizing appropriate machining sequences and methods. Ultimately, the system automatically generates tool paths for machining.
In addition to proposing the utilization of trained deep learning models for feature recognition, the thesis analyzes geometric information for tool selection, establishes preprocessing procedures, and arranges machining sequences and methods. To accomplish this, the thesis leverages NXOpen, using the application programming interface of Siemens NX to establish an automatic tool path generation system. Two 3D CAD models are utilized as examples to validate the practicality of the developed system. The research demonstrates that the system adapts well to various machining features, is capable of generating accurate and logical machining paths, and significantly reduces software operation time.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 2 1.3 論文架構 3 第二章 文獻回顧 5 第三章 自動化特徵辨識 11 3.1 特徵邊與迴圈分類 11 3.1.1凹凸邊判斷 11 3.1.2內外迴圈判斷 15 3.2 特徵搜尋 15 3.2.1相鄰凹特徵搜尋 16 3.2.2相鄰凸特徵搜尋 16 3.3 特徵面權重編碼 17 3.3.1面權重評分 18 3.3.2貫穿面權重 20 3.3.3特徵資料集 20 3.4 特徵辨識 24 第四章 加工特徵之刀具選用 27 4.1 粗銑的刀具尺寸 27 4.1.1圓孔特徵之刀具尺寸 29 4.1.2口袋特徵之刀具尺寸 30 4.1.3階梯特徵之刀具尺寸 32 4.1.4盲槽特徵之刀具尺寸 33 4.1.5通槽特徵之刀具尺寸 36 4.2 圓角加工的刀具尺寸 39 4.3 中銑的刀具尺寸 42 4.4 實際加工的刀具尺寸 44 第五章 特徵之加工前處理 49 5.1 歸類無法被辨識的凸邊面 49 5.2 加工之基本概念 54 5.3 前處理程序設定 55 5.3.1設定工作座標 55 5.3.2設定包容塊 57 5.3.3刀具庫設定 58 第六章 加工順序與工法安排 62 6.1 加工順序安排 62 6.1.1刀具種類順序 64 6.1.2刀具外徑順序 66 6.1.3特徵加工順序 70 6.2 加工工法安排 74 6.2.1平面銑削加工法 74 6.2.2等高銑削加工法 75 6.2.3底壁銑削加工法 77 6.2.4鑽孔加工法 79 6.2.5平行Z軸的圓角曲面處理 81 6.2.6球銑刀切削面處理 82 第七章 系統開發 84 7.1 系統運作流程 84 7.2 實例驗證一 86 7.3 實例驗證二 99 7.4 系統限制 109 第八章 結論與未來研究方向 112 8.1 結論 112 8.2 未來研究方向 113 參考文獻 114

[1]Yusof, Y. and Latif, K., “Survey on computer-aided process planning,” International Journal of Advanced Manufacturing Technology, Vol. 75, pp. 77-89, 2014.
[2]Al-wswasi, M., Ivanov, A. and Makatsoris, H., “A survey on smart automated computer-aided process planning (ACAPP) techniques,” International Journal of Advanced Manufacturing Technology, Vol. 97, pp. 809-832, 2018.
[3]Isnaini, M.M. and Shirase, K., “Review of computer-aided process planning systems for machining operation - future development of a computer-aided process planning system,” International Journal of Automation Technology, Vol. 8, No. 3, pp. 317-332, 2014.
[4]Shi, Y., Zhang, Y., Xia, K. and Harik, R., “A critical review of feature recognition techniques,” Computer-Aided Design and Applications, Vol. 17, No. 5, pp. 861-899, 2020.
[5]Joshi, S. and Chang, T.C., “Graph-based heuristics for recognition of machined features from a 3D solid model,” Computer-Aided Design, Vol. 20, No. 2, pp. 58-66, 1988.
[6]Kim, Y.S., “Recognition of form features using convex decomposition,” Computer-Aided Design, Vol. 24, No. 9, pp. 461-476, 1992.
[7]Shah, J.J., Anderson, D., Kim, Y.S. and Joshi, S., “A discourse on geometric feature recognition from CAD models,” Journal of Computing and Information Science in Engineering, Vol. 1, No. 1, pp. 41-51, 2000.
[8]Zhang, Y., Zhang, Y., He, K., Li, D., Xu, X. and Gong, Y., “Intelligent feature recognition for STEP-NC-compliant manufacturing based on artificial bee colony algorithm and back propagation neural network,” Journal of Manufacturing Systems, Vol. 62, pp. 792-799, 2022.
[9]Zhang, Z., Jaiswal, P. and Rai, R., “FeatureNet: Machining feature recognition based on 3D Convolution Neural Network,” Computer-Aided Design and Applications, Vol. 101, pp. 12-22, 2018.
[10]Shi, P., Qi, Q., Qin, Y., Scott, P.J. and Jiang X., “A novel learning-based feature recognition method using multiple sectional view representation,” Journal of Intelligent Manufacturing, Vol. 31, pp. 1291-1309, 2020.
[11]陳正岳,「以特徵編碼之深度學習進行加工特徵辨識」,碩士論文, 臺灣科技大學機械工程系,台北市,2022。
[12]Rui, H. and Shusheng, Z., “An effective adaptive dynamic evolution computing approach of roughing process for part with complex pockets,” International Journal of Advanced Manufacturing Technology, Vol. 96, pp. 3279-3293, 2018.
[13]Xu, C., Zhang, S., Huang, B., Li, X. and Huang, R., “NC process reuse oriented effective subpart retrieval approach of 3D CAD models,” Computers in Industry, Vol. 90, pp. 1-16, 2017.
[14]Huang, R., Jiang, J., Huang, B. and Zhang, S., “Multilevel structured NC machining process model based on dynamic machining feature for process reuse.” International Journal of Advanced Manufacturing Technology, Vol. 104, pp. 2045-2060, 2019.
[15]Xu, C., Zhang, S., Huang, R., Huang, B. and Li, X., “NC process reuse-oriented flexible process planning optimization approach for prismatic parts.” International Journal of Advanced Manufacturing Technology, Vol. 87, pp. 329-351, 2016.
[16]張書庭,「木工樑柱加工之自動化製程規劃」,碩士論文, 臺灣科技大學機械工程系,台北市,2021。
[17]Hua, G.R., Zhou, X.H. and Ruan, X.Y., “GA-based synthesis approach for machining scheme selection and operation sequencing optimization for prismatic parts,” International Journal of Advanced Manufacturing Technology, Vol. 33, pp. 594-603, 2006.
[18]Salehi, M. and Tavakkoli-Moghaddam, R., “Application of genetic algorithm to computer-aided process planning in preliminary and detailed planning,” Engineering Applications of Artificial Intelligence, Vol. 22, pp. 1179-1187, 2009.
[19]Guo, Y.W., Mileham, A.R., Owen, G.W., Maropoulos, P.G. and Li, W.D., “Operation sequencing optimization for five-axis prismatic parts using a particle swarm optimization approach,” Proceedings of the Institution of Mechanical Engineers Part, B: Journal of Engineering Manufacture, Vol. 223, pp. 485-497, 2009.
[20]Guo, Y.W., Mileham, A.R., Owen, G.W. and Li, W.D., “Operation sequencing optimization using a particle swarm optimization approach,” Proceedings of the Institution of Mechanical Engineers Part, B: Journal of Engineering Manufacture, Vol. 220, pp. 1945-1958, 2006.
[21]Hu, Q., Qiao, L. and Peng, G., “An ant colony approach to operation sequencing optimization in process planning,” Proceedings of the Institution of Mechanical Engineers Part, B: Journal of Engineering Manufacture, Vol. 231, pp. 470-489, 2016.
[22]Gopala Krishna, A. and Mallikarjuna Rao, K., “Optimisation of operations sequence in CAPP using an ant colony algorithm,” International Journal of Advanced Manufacturing Technology, Vol. 29, pp. 159-164, 2006.
[23]NX Open, Siemens PLM Software Inc., Plano, TX, USA., 2014.

QR CODE