簡易檢索 / 詳目顯示

研究生: 周俊傑
Chun-Chieh Chou
論文名稱: 利用氮電漿處理硒化鎵含鎘(1%)製作同質pn二極體之光電導特性研究
Study on photoconductivity of GaSe(Cd=1%) pn diode fabricated via nitrogen plasma treatment
指導教授: 李奎毅
Kuei-Yi Lee
林保宏
Pao-Hung Lin
口試委員: 李奎毅
Kuei-Yi Lee
林保宏
Pao-Hung Lin
何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 100
中文關鍵詞: 硒化鎵氮電漿處理同質pn二極體光電導特性研究含鎘(1%)
外文關鍵詞: GaSe, nitrogen plasma treatment, pn diode, photoconductivity, Cd=1%
相關次數: 點閱:151下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用布里茲曼法成長硒化鎵(Cd=1%)塊材,並利用機械剝離法取得硒化鎵(Cd=1%)薄片,利用氮電漿處理改變其半導體特性,經過電荷中性點量測和FET載子量測發現成功使硒化鎵(Cd=1%)從p型半導體轉變為n型半導體材料。並使用掃描式電子顯微鏡,拉曼光譜儀,光激發螢光光譜,X射線光電子能譜儀對硒化鎵(Cd=1%)進行特性分析。接著使用玻璃基板作為遮罩定義電漿處理範圍,將一半的硒化鎵(Cd=1%)遮半做電漿處理,製備出同質pn接面二極體,並量測出二極體特性曲線,且在110 W氮電漿處理的同質pn接面發現最佳n值,n值為2.19,並將此應用於半波整流電路中,量測結果在頻率1-1k Hz內皆有良好的整流效果。在光感測元件方面,製作了三種元件,分別為本質硒化鎵(Cd=1%),經過全面氮電漿處理的硒化鎵(Cd=1%)和遮半氮電漿處理的硒化鎵(Cd=1%)二極體,進行光電流,光電導率,歸一化光響應度的量測,結果顯示硒化鎵(Cd=1%)二極體在光電導率和歸一化光響應度皆為最佳,這是因為二極體在逆向偏壓下能使空乏區變寬,抑制暗電流,且光激發的電子-電洞對在內建電場的指引下快速分離,使光電流上升。本研究結果顯示,硒化鎵(Cd=1%)的光電性能可透過製作遮半氮電漿處理同質pn二極體來增強,且是低成本,高效率和非危險性的方式。


In this study, gallium selenide (Cd=1%) bulk was grown by using the Bridgman method, and flake of gallium selenide (Cd=1%) were obtained through mechanical exfoliation. Nitrogen plasma treatment was employed to modify its semiconductor properties. Measurements of the charge neutrality point (CNP) and FET revealed a successful transition of gallium selenide (Cd=1%) from a p-type to an n-type semiconductor material. Characterization of gallium selenide (Cd=1%) was conducted using scanning electron microscopy (SEM), Raman spectrometer, photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS). Next, a glass substrate was used as a mask to define the plasma treatment area, and half area of the gallium selenide (Cd=1%) was plasma-treated to prepare a homojunction pn diode. The diode characteristic curve was measured, and the optimal ideal factor (n) of 2.19 was found in the homojunction pn diode treated with 110 W nitrogen plasma. This diode was applied in a half-wave rectifier circuit, showing good rectifying performance across the frequency range of 1-1k Hz. In the optical measurement, three types were fabricated: intrinsic gallium selenide (Cd=1%), gallium selenide (Cd=1%) with nitrogen plasma treatment, and half nitrogen plasma-treated gallium selenide (Cd=1%) pn diode. Measurements of photocurrent, photoconductivity, and normalized photoresponsivity indicated that the gallium selenide (Cd=1%) pn diode exhibited the best performance in terms of photoconductivity and normalized photoresponsivity. This is attributed to the widening of the depletion region under reverse bias, which suppresses dark current and allows rapid separation of photoexcited electron-hole pairs under the influence of the built-in electric field, leading to an increase in photocurrent. The results of this study demonstrate that the photoelectric performance of gallium selenide (Cd=1%) can be enhanced by fabricating a homojunction pn diode through partial nitrogen plasma treatment. This method is low-cost, efficient, and non-hazardous.

中文摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 1. 緒論 1 1.1 層狀半導體材料 2 1.2 硒化鎵 3 1.2.1 硒化鎵摻鎘 4 1.2.2 層狀半導體合成與製備 6 1.3 pn接面二極體 7 1.3.1 背景 7 1.3.2 工作原理 9 1.3.3 理想因子 11 1.3.4 層狀半導體材料製作pn接面二極體 13 1.4 光感測器 14 1.4.1 光電效應 15 1.4.1.1 外部光電效應 15 1.4.1.2 光電導效應 16 1.4.2 光電二極體 17 1.4.3 層狀半導體材料製作光感測器 18 1.5 光電導率 19 1.6 量子效率與光響應度 20 1.7 研究動機與背景 21 2. 實驗方式與儀器介紹 22 2.1 實驗流程圖 22 2.2 晶體成長方式介紹 22 2.3 電漿處理 26 2.4 電子束蒸鍍機 29 2.5 退火處理 30 2.6 分析儀器介紹 31 2.6.1 拉曼光譜儀 31 2.6.2 掃描式電子顯微鏡 33 2.6.3 光激發螢光光譜 35 2.6.4 X射線光電子能譜儀 36 2.7 量測實驗介紹 37 2.7.1 電荷中性點量測 37 2.7.2 FET載子濃度量測 39 2.7.3 pn二極體量測 40 2.7.4 半波整流量測 41 2.7.5 光電流量測 43 3. 結果與討論 46 3.1 拉曼光譜儀 46 3.2 掃描式電子顯微鏡 48 3.3 光激發螢光光譜 49 3.4 X射線光電子能譜儀 51 3.5 X射線光電子能譜儀半定量分析 56 3.6 電極差異 57 3.7 FET載子濃度量測 60 3.8 電荷中性點量測 64 3.9 pn二極體量測 66 3.10 半波整流量測 69 3.11 光電流量測 71 3.12 光電導率 77 3.13 歸一化光響應度 82 3.14 上升時間和下降時間 87 4. 結論 89 參考文獻 91

[1] Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature Nanotechnology, vol. 7, no. 11, pp. 699-712, 2012.
[2] H. Benisty, S. Olivier, M. Rattier, and C. Weisbuch, “Applications of two-dimensional photonic crystals to semiconductor optoelectronic devices,” Photonic Crystals and Light Localization in the 21st Century, pp. 117-128, 2001.
[3] C. Soldano, A. Mahmood, and E. Dujardin, “Production, properties and potential of graphene,” Carbon, vol. 48, no. 8, pp. 2127-2150, 2010.
[4] A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Reviews of Modern Physics, vol. 81, no. 1, p. 109, 2009.
[5] G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, “The application of graphene as electrodes in electrical and optical devices,” Nanotechnology, vol. 23, no. 11, p. 112001, 2012.
[6] J. Phiri, P. Gane, and T. C. Maloney, “General overview of graphene: production, properties and application in polymer composites,” Materials Science and Engineering: B, vol. 215, pp. 9-28, 2017.
[7] X. Xu, C. Liu, Z. Sun, T. Cao, Z. Zhang, E. Wang, Z. Liu, and K. Liu, “Interfacial engineering in graphene bandgap,” Chemical Society Reviews, vol. 47, no. 9, pp. 3059-3099, 2018.
[8] R. H. Bube and E. L. Lind, "Photoconductivity of gallium selenide crystals," Physical Review, vol. 115, no. 5, pp. 1159-1164, 1959.
[9] K. Ueno, N. Takeda, K. Sasaki, and A. Koma, "Investigation of the growth mechanism of layered semiconductor GaSe," Applied Surface Science, vol. 113-114, pp. 38-42, 1997.
[10] S. G. Choi, D. H. Levi, C. Martinez-Tomas, and V. Muñoz Sanjosé, "Above-bandgap ordinary optical properties of GaSe single crystal," Journal of Applied Physics, vol. 106, no. 5, p. 053517, 2009.
[11] C. S. Jung et al., "Red-to-ultraviolet emission tuning of two-dimensional gallium sulfide/selenide," ACS Nano, vol. 9, no. 10, pp. 9585-9593, 2015.
[12] A. Abderrahmane, P.-G. Jung, N.-H. Kim, P. J. Ko, and A. Sandhu, "Gate-tunable optoelectronic properties of a nano-layered GaSe photodetector," Optical Materials Express, vol. 7, no. 2, pp. 587-592, 2017.
[13] C.-H. Ho, M.-H. Hsieh, and C.-C. Wu, "Photoconductance and photoresponse of layer compound photodetectors in the UV-visible region," Review of Scientific Instruments, vol. 77, no. 11, p. 113102, 2006.
[14] A. Segura, J. Bouvier, M. V. Andrés, F. J. Manjón, and V. Muñoz, "Strong optical nonlinearities in gallium and indium selenides related to inter-valence-band transitions induced by light pulses," Physical Review B, vol. 56, no. 7, pp. 4075-4084, 1997.
[15] W. Jie et al., "Layer-dependent nonlinear optical properties and stability of non-centrosymmetric modification in few-layer GaSe sheets," Angewandte Chemie International Edition, vol. 54, no. 4, pp. 1185-1189, 2015.
[16] A. F. Qasrawi and A. A. Saleh, "Structural, compositional and optical properties of gallium selenide thin films doped with cadmium," Crystal Research and Technology, vol. 43, no. 7, pp. 769-772, 2008.
[17] S. Shigetomi, T. Ikari, and H. Nakashima, "Optical and electrical properties of layer semiconductor p‐GaSe doped with Zn," Journal of Applied Physics, vol. 74, no. 6, pp. 4125-4129, 1993.
[18] T. Çolakoğlu and M. Parlak, "Effect of Cd-doping level on the electrical, structural and photoconductivity properties of GaSe thin films," Thin Solid Films, vol. 492, no. 1, pp. 52-60, 2005.
[19] E. P. Mukhokosi and M. Maaza, "Influence of device architectures and mobility on response/recovery time of metal halide perovskites: A review," Journal of Materials Science, vol. 57, no. 3, pp. 1555-1580, 2022.
[20] P. E. Tomaszewski, "Jan Czochralski—father of the Czochralski method," Journal of Crystal Growth, vol. 236, no. 1, pp. 1-4, 2002.
[21] G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice. Elsevier, 1999.
[22] P. Capper and M. Mauk, Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials. John Wiley & Sons, 2007.
[23] J. R. Arthur, "Molecular beam epitaxy," Surface Science, vol. 500, no. 1-3, pp. 189-217, 2002.
[24] C. C. Wu, C. H. Ho, W. T. Shen, Z. H. Cheng, Y. S. Huang, and K. K. Tiong, "Optical properties of GaSe1−xSx series layered semiconductors grown by vertical Bridgman method," Materials Chemistry and Physics, vol. 88, no. 2-3, pp. 313-317, 2004.
[25] D. Bonacchi, G. Rizzi, U. Bardi, and A. Scrivani, “Chemical stripping of ceramic films of titanium aluminum nitride from hard metal substrates,” Surface and Coatings Technology, vol. 165, no. 1, pp. 35-39, 2003.
[26] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, and R. J. Smith, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science, vol. 331, no. 6017, pp. 568-571, 2011.
[27] J. Xie, Y. Wang, D. Zhang, C. Liang, W. Liu, Y. Chong, X. Yin, Y. Zhang, D. Gui, and L. Chen, “Photo-exfoliation of a highly photo-responsive two-dimensional metal–organic framework,” Chemical Communications, vol. 55, no. 78, pp. 11715-11718, 2019.
[28] Y. Huang, Y.-H. Pan, R. Yang, L.-H. Bao, L. Meng, H.-L. Luo, Y.-Q. Cai, G.-D. Liu, W.-J. Zhao, and Z. Zhou, “Universal mechanical exfoliation of large-area 2D crystals,” Nature Communications, vol. 11, no. 1, p. 2453, 2020.
[29] F. Liu, “Mechanical exfoliation of large area 2D materials from vdW crystals,” Progress in Surface Science, vol. 96, no. 2, p. 100626, 2021.
[30] J. Bardeen and W. H. Brattain, "Physical principles involved in transistor action," Physical Review, vol. 75, no. 8, pp. 1208-1225, 1949.
[31] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles: McGraw-hill, 2003.
[32] N. Alfaraj, Characterization of Red, Blue and Green Light-Emitting Diodes. 2017.
[33] S. Yang et al., "2D Cu9S5/PtS2/WSe2 double heterojunction bipolar transistor with high current gain," Advanced Materials, vol. 33, no. 52, p. 2106537, 2021.
[34] J. Zhang et al., "Vanadium-doped monolayer MoS2 with tunable optical properties for field-effect transistors," ACS Applied Nano Materials, vol. 4, no. 1, pp. 769-777, 2021.
[35] S. McKagan, W. Handley, K. Perkins, and C. Wieman, “A research-based curriculum for teaching the photoelectric effect,” American Journal of Physics, vol. 77, no. 1, pp. 87-94, 2009.
[36] E. Condon, “Note on the external photoelectric effect of semi-conductors,” Physical Review, vol. 54, no. 12, p. 1089, 1938.
[37] R. Zitter, “Role of traps in the photoelectromagnetic and photoconductive effects,” Physical Review, vol. 112, no. 3, p. 852, 1958.
[38] E. Monroy, E. Munoz, F. Sánchez, F. Calle, E. Calleja, B. Beaumont, P. Gibart, J. Munoz, and F. Cussó, “High-performance GaN pn junction photodetectors for solar ultraviolet applications,” Semiconductor Science and Technology, vol. 13, no. 9, p. 1042, 1998.
[39] M. E. Nell and A. M. Barnett, “The spectral pn junction model for tandem solar-cell design,” IEEE Transactions on Electron Devices, vol. 34, no. 2, pp. 257-266, 1987.
[40] P. Hu, Z. Wen, L. Wang, P. Tan, and K. Xiao, "Synthesis of few-layer GaSe nanosheets for high performance photodetectors," ACS Nano, vol. 6, no. 7, pp. 5988-5994, 2012.
[41] X. Wu et al., "Influence of the device structure on the electrical and photodetector properties of n-MoS2/p-GaSe heterojunction optoelectronic devices," ACS Applied Nano Materials, vol. 6, no. 13, pp. 11327-11333, 2023.
[42] Z. He et al., "GaSe/MoS2 heterostructure with ohmic-contact electrodes for Fast, broadband photoresponse, and self-driven photodetectors," Advanced Materials Interfaces, vol. 7, no. 9, p. 1901848, 2020.
[43] H.-C. Chang, Y.-J. Huang, H.-Y. Chang, W.-J. Su, Y.-T. Shih, Y.-S. Huang, and K.-Y. Lee, “Oxygen adsorption effect on nitrogen-doped graphene electrical properties,” Applied Physics Express, vol. 7, no. 5, p. 055101, 2014.
[44] W. Li, J. Y. Ke, Y. X. Ou-Yang, Y. X. Lin, C. H. Ho, K. Y. Lee, S. Fujii, S.-i. Honda, H. Okado, and M. Naitoh, “Molybdenum disulfide homogeneous junction diode fabrication and rectification characteristics,” Japanese Journal of Applied Physics, vol. 61, no. 8, p. 086504, 2022.
[45] C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature, vol. 121, no. 3048, pp. 501-502, 1928.
[46] E. Smith and G. Dent, Modern Raman Spectroscopy: A Practical Approach, Wiley, 2019.
[47] K. Akhtar, S. A. Khan, S. B. Khan, and A. M. Asiri, "Scanning electron microscopy: principle and applications in nanomaterials characterization," in Handbook of Materials Characterization, S. K. Sharma Ed. Cham: Springer International Publishing, pp. 113-145, 2018.
[48] H. B. Bebb and E. Williams, "Photoluminescence I: theory," in Semiconductors and Semimetals, vol. 8: Elsevier, pp. 181-320, 1972.
[49] M. Usman et al., "Raman scattering and exciton photoluminescence in few-layer GaSe: thickness- and temperature-dependent behaviors," The Journal of Physical Chemistry C, vol. 126, no. 25, pp. 10459-10468, 2022.
[50] M. B. Sreedhara, K. Vasu, and C. N. R. Rao, "Synthesis and characterization of few-layer nanosheets of GaN and other metal nitrides," Zeitschrift Für Anorganische und Allgemeine Chemie, vol. 640, no. 14, pp. 2737-2741, 2014.
[51] S. Lei et al., "Synthesis and photoresponse of large GaSe atomic layers," Nano Letters, vol. 13, no. 6, pp. 2777-2781, 2013.
[52] M. Karabulut, G. Bilir, G. M. Mamedov, A. Seyhan, and R. Turan, "Photoluminescence spectra of nitrogen implanted GaSe crystals," Journal of Luminescence, vol. 128, no. 10, pp. 1551-1555, 2008.
[53] H. Iwakuro, C. Tatsuyama, and S. Ichimura, "XPS and AES studies on the oxidation of layered semiconductor GaSe," Japanese Journal of Applied Physics, vol. 21, no. 1R, p. 94, 1982.
[54] M. Grodzicki, "Properties of bare and thin-film-covered GaN(0001) Surfaces," Coatings, vol. 11, no. 2, 2021.
[55] N. Briggs et al., "Transformation of 2D group-III selenides to ultra-thin nitrides: enabling epitaxy on amorphous substrates," Nanotechnology, vol. 29, no. 47, p. 47LT02, 2018.
[56] Kratos Analytical, “XPS analysis of a nitrogen-doped GaAs thin film.” AZoM, 2024.
[57] S. Nakamura, S. Pearton, and G. Fasol, "n-type GaN," in The Blue Laser Diode: The Complete Story, S. Nakamura, S. Pearton, and G. Fasol Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 103-112, 2000.
[58] P. Loretz et al., "Conductive n-type gallium nitride thin films prepared by sputter deposition," Journal of Vacuum Science & Technology A, vol. 40, no. 4, p. 042703, 2022.
[59] D. Haase et al., "Deep‐level defects and n‐type‐carrier concentration in nitrogen implanted GaN," Applied Physics Letters, vol. 69, no. 17, pp. 2525-2527, 1996.
[60] P. Bogusl/awski, E. L. Briggs, and J. Bernholc, "Native defects in gallium nitride," Physical Review B, vol. 51, no. 23, pp. 17255-17258, 1995.
[61] N. Liu, S. Zhou, N. Gao, and J. Zhao, "Tuning Schottky barriers for monolayer GaSe FETs by exploiting weak Fermi level pinning effect," Physical Chemistry Chemical Physics, vol. 20, 2018.
[62] M. Anandan et al., "High-responsivity broad-band sensing and photoconduction mechanism in direct-Gap α-In2Se3 nanosheet photodetectors," Nanotechnology, vol. 31, no. 46, p. 465201, 2020.
[63] J. F. Sánchez‐Royo, A. Segura, A. Chevy, and L. Roa, "Transport properties of nitrogen doped p‐gallium selenide single crystals," Journal of Applied Physics, vol. 79, no. 1, pp. 204-208, 1996.
[64] C. A. Hurni et al., "p-n junctions on Ga-face GaN grown by NH3 molecular beam epitaxy with low ideality factors and low reverse currents," Applied Physics Letters, vol. 97, no. 22, p. 222113, 2010.
[65] P. O. Lauritzen and C. L. Ma, “A simple diode model with reverse recovery,” IEEE Transactions on Power Electronics, vol. 6, no. 2, pp. 188-191, 1991.
[66] T. Ouyang, X. Wang, S. Liu, H. Chen, and S. Deng, “A complete two-dimensional avalanche photodiode based on MoTe2−WS2−MoTe2 heterojunctions with ultralow dark current,” Frontiers in Materials, vol. 8, p. 736180, 2021.
[67] M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Mueller, “Mechanisms of photoconductivity in atomically thin MoS2,” Nano Letters, vol. 14, no. 11, pp. 6165-6170, 2014.
[68] C. K. Dass, M. A. Khan, G. Clark, J. A. Simon, R. Gibson, S. Mou, X. Xu, M. N. Leuenberger, and J. R. Hendrickson, “Ultra‐long lifetimes of single quantum emitters in monolayer WSe2/hBN heterostructures,” Advanced Quantum Technologies, vol. 2, no. 5-6, p. 1900022, 2019.
[69] J. Ahn, J.-H. Kang, J. Kyhm, H. T. Choi, M. Kim, D.-H. Ahn, D.-Y. Kim, I.-H. Ahn, J. B. Park, and S. Park, “Self-powered visible–invisible multiband detection and imaging achieved using high-performance 2D MoTe2/MoS2 semivertical heterojunction photodiodes,” ACS Applied Materials & Interfaces, vol. 12, no. 9, pp. 10858-10866, 2020.
[70] D. V. Rybkovskiy et al., "Size-induced effects in gallium selenide electronic structure: The influence of interlayer interactions," Physical Review B, vol. 84, no. 8, p. 085314, 2011.
[71] S. Sorifi, M. Moun, S. Kaushik, and R. Singh, "High-temperature performance of a GaSe nanosheet-based broadband photodetector," ACS Applied Electronic Materials, vol. 2, no. 3, pp. 670-676, 2020.
[72] M. Song et al., "Epitaxial growth of 2D gallium selenide flakes for strong nonlinear optical response and visible-light photodetection," Frontiers of Physics, vol. 18, 2023.
[73] X. Wu et al., "Highly sensitive photodetector based on the n-Si/p-GaSe vertical heterojunction," ACS Applied Nano Materials, vol. 5, no. 6, pp. 8012-8019, 2022.
[74] A. Islam, J. Lee, and P. X. L. Feng, "Atomic layer GaSe/MoS2 van der Waals heterostructure photodiodes with low noise and large dynamic Range," ACS Photonics, vol. 5, no. 7, pp. 2693-2700, 2018.
[75] F. Wang, T. Zhang, R. Xie, Z. Wang, and W. Hu, "How to characterize figures of merit of two-dimensional photodetectors," Nature Communications, vol. 14, no. 1, p. 2224, 2023.

無法下載圖示 全文公開日期 2034/06/26 (校內網路)
全文公開日期 2034/06/26 (校外網路)
全文公開日期 2034/06/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE