簡易檢索 / 詳目顯示

研究生: 吳致葦
Jhih-Wei Wu
論文名稱: 利用活性開環複分解反應合成不同嵌段數之共聚物及其在陰離子交換膜燃料電池之應用
Multiblock Copolymers Prepared by Living ROMP Polymerization and Their Application for Anion Exchange Membrane Fuel Cells
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 汪昆立
Kun-Li Wang
蕭育生
Yu-Sheng Hsiao
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 84
中文關鍵詞: 陰離子交換膜四級銨陽離子微相分離陰離子傳導率燃料電池開環複分解反應活性聚合
外文關鍵詞: anion exchange membrane, quaternary ammonium cation, microphase separation, anion conductivity, fuel cell, ring-opening metathesis polymerization, living polymerization
相關次數: 點閱:600下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以dicyclopentadiene (DCPD)為起始物,利用Diels-Alder 加成反應合成出兩種不同降冰烯之衍生物,並以dichloromethane為溶劑以及[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro(phenylmethylene)bis(3-bromopyridi ne) ruthenium(II) (G3)進行活性開環複分解聚合反應,成功合出一系列擁有不同嵌段共聚物結構的聚降冰烯高分子(rPNB),並將其進行還原和四級銨化,最後以N,N,N′,N′-tetramethyl-1,3-diaminepropane (TMDAP)作為交聯劑,成功製備出不同IEC以及交聯程度之陰離子交換膜,並對其做燃料電池性質之探討。
    由於其四級銨鹽本身之熱穩定性,使得薄膜在200 ℃前皆無出現熱重損失,展現出極佳的熱穩定性。而block copolymer所測得含水率和溶脹率遠低於random copolymer並且在機械性質上也有不錯的表現。另外也藉由小角度X光散射(SAXS)證明block copolymers具有明確地微相分離,並且明顯反應至傳導率上,使D-2.00HPNB具有比相近IEC之其他AEM有更高的傳導率(80 ℃, 198.53 mS/cm),最後在60 ℃之1 M NaOH中進行鹼性穩定性之測試,並在720小時都未發現明顯降解,顯示極佳的鹼性穩定性。


    In this work, we used dicyclopentadiene (DCPD) as a starting material and synthesized two kind of norbornene with different derivatives by Diels-Alder reaction. And we successfully prepared a series of polynorbornene with multiblock copolymer structure by using living ring-opening metathesis polymerization and controlled the IECs and crosslinking degree of the anion exchange membrane (AEM) by feeding ratio.
    The thermal stability of the resulting membranes is excellent, with no significant thermal weight loss observed below 200 °C. The block copolymer showed much lower water uptake and swelling ratio than the random copolymer and had good mechanical properties. Small-angle X-ray scattering (SAXS) proved that block copolymers have clear microphase separation, which is significantly reflected in the conductivity. D-2.00HPNB has a higher conductivity (80 ℃, 198.53 mS/cm) than other AEMs with similar IECs. Finally, the alkaline stability was tested in 1 M NaOH at 60 ℃, and no significant degradation was observed for up to 720 hours, demonstrating excellent alkaline stability.

    中文摘要 i Abstract ii 致謝 iii 目錄 iv Figure 索引 vii Scheme 索引 ix Table 索引 x 第一章 緒論 1 1.1 前言 1 1.2 燃料電池介紹 2 1.3 AEMFC之發電原理與結構 3 1.4 開環複分解聚合(ring-opening metathesis polymerization, ROMP) 5 1.5 活性聚合概述 (living polymerization) 6 第二章 文獻回顧 8 2.1 陰離子交換膜介紹 8 2.2 鹼性穩定性與陽離子基團之降解機制 9 2.3 活性開環複分解聚合(Living ring-opening metathesis polymerization, Living ROMP) 14 2.4 研究動機 16 第三章 實驗 17 3.1 實驗儀器 17 3.2 實驗藥品 18 3.3 單體合成 19 3.3.1 5-Bromopentene之合成 19 3.3.2 5‐(Bromopropyl)bicyclo[2.2.1]hept‐2‐ene (M1)之合成 19 3.3.3 5‐Butylbicyclo[2.2.1]hept‐2‐ene (M2)之合成 20 3.3.4 [1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro (pheny lmethylene)bis(3-bromopyridine)ruthenium(II) (G3) 20 3.4 聚降冰烯之合成 22 3.4.1 Random copolymer之合成 22 3.4.2 Diblock copolymer之合成 23 3.4.3 Triblock copolymer之合成 24 3.5 聚降冰烯之還原 25 3.6 高分子薄膜之製備方法 26 第四章 結果與討論 27 4.1 單體合成與表徵 27 4.1.1 5‐(Bromopropyl)bicyclo[2.2.1]hept‐2‐ene (M1) 27 4.1.2 5‐Butylbicyclo[2.2.1]hept‐2‐ene (M2) 30 4.2 高分子合成與性質表徵 32 4.2.1 聚降冰烯之合成與性質表徵 32 4.2.2 活性聚合之證明 36 4.2.3 Random copolymer之證明 41 4.2.4 還原聚降冰烯之合成與性質表徵 42 4.2.5 AEM之製備 46 4.3 IEC、吸水率、溶脹率及熱性質 48 4.4 機械性質 53 4.5 微相分離之探討 55 4.6 離子傳導率 59 4.7 鹼性穩定性 63 第五章 結論 65 參考文獻 66

    1. Varcoe, J. R.; Slade, R. C.; Wright, G. L.; Chen, Y., Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C cathodes. J. Phys. Chem. B 2006, 110, 21041-9.
    2. Alesker, M.; Page, M.; Shviro, M.; Paska, Y.; Gershinsky, G.; Dekel, D. R.; Zitoun, D., Palladium/nickel bifunctional electrocatalyst for hydrogen oxidation reaction in alkaline membrane fuel cell. J. Power Sources 2016, 304, 332-339.
    3. Xu, J.; Gao, P.; Zhao, T. S., Non-precious Co3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells. Energy & Environmental Science 2012, 5, 5333-5339.
    4. Dekel, D. R., Review of cell performance in anion exchange membrane fuel cells. J. Power Sources 2018, 375, 158-169.
    5. Shaari, N.; Kamarudin, S. K., Chitosan and alginate types of bio-membrane in fuel cell application: An overview. J. Power Sources 2015, 289, 71-80.
    6. Hren, M.; Božič, M.; Fakin, D.; Kleinschek, K. S.; Gorgieva, S., Alkaline membrane fuel cells: anion exchange membranes and fuels. Sustainable Energy & Fuels 2021, 5, 604-637.
    7. Kumar, A.; Singh, T.; Singh, S.; Liu, Y., A comprehensive review of fuel cell and its types. Int. J. Res. Mech. Eng. Technol. 2013, 5762, 13-21.
    8. Gülzow, E.; Schulze, M., Long-term operation of AFC electrodes with CO2 containing gases. J. Power Sources 2004, 127, 243-251.
    9. McLarty, D.; Brouwer, J.; Samuelsen, S., Hybrid fuel cell gas turbine system design and optimization. Journal of Fuel Cell Science and Technology 2013, 10, 041005.
    10. Varlas, S.; Lawrenson, S. B.; Arkinstall, L. A.; O’Reilly, R. K.; Foster, J. C., Self-assembled nanostructures from amphiphilic block copolymers prepared via ring-opening metathesis polymerization (ROMP). Prog. Polym. Sci. 2020, 107, 101278.
    11. Mutlu, H.; de Espinosa, L. M.; Meier, M. A. R., Acyclic diene metathesis: A versatile tool for the construction of defined polymer architectures. Chem. Soc. Rev. 2011, 40, 1404-1445.
    12. Randall, M. L.; Snapper, M. L., Selective olefin metatheses—new tools for the organic chemist: A review. J. Mol. Catal. A: Chem. 1998, 133, 29-40.
    13. Bicchielli, D.; Borguet, Y.; Delaude, L.; Demonceau, A.; Dragutan, I.; Dragutan, V.; Jossifov, C.; Kalinova, R.; Nicks, F.; Sauvage, X. In Recent applications of alkene metathesis in fine chemical synthesis, Green Metathesis Chemistry, Springer: 2010; pp 207-274.
    14. Bielawski, C. W.; Grubbs, R. H., Living ring-opening metathesis polymerization. Prog. Polym. Sci. 2007, 32, 1-29.
    15. Bielawski, C. W.; Grubbs, R. H., Highly efficient ring-opening metathesis polymerization (ROMP) using new ruthenium catalysts containing N-Heterocyclic Carbene Ligands. Angew. Chem. Int. Ed. 2000, 39, 2903-2906.
    16. Choinopoulos, I., Grubbs’ and Schrock’s catalysts, ring opening metathesis polymerization and molecular brushes—synthesis, characterization, properties and applications. Polymers 2019, 11, 298.
    17. Gringolts, M. L.; Denisova, Y. I.; Finkelshtein, E. S.; Kudryavtsev, Y. V., Olefin metathesis in multiblock copolymer synthesis. Beilstein Journal of Organic Chemistry 2019, 15, 218-235.
    18. Kwasny, M. T.; Tew, G. N., Expanding metal cation options in polymeric anion exchange membranes. Journal of Materials Chemistry A 2017, 5, 1400-1405.
    19. Price, S. C.; Ren, X.; Savage, A. M.; Beyer, F. L., Synthesis and characterization of anion-exchange membranes based on hydrogenated poly(norbornene). Polymer Chemistry 2017, 8, 5708-5717.
    20. He, X.; Han, Z.; Yang, Y.; Wang, S.; Tu, G.; Huang, S.; Zhang, F.; Chen, D., The preparation and application of a ROMP-type epoxy-functionalized norbornene copolymer and its hybrid alkaline anion exchange membranes. RSC Advances 2017, 7, 55977-55985.
    21. Wang, C.; Mo, B.; He, Z.; Shao, Q.; Pan, D.; Wujick, E.; Guo, J.; Xie, X.; Xie, X.; Guo, Z., Crosslinked norbornene copolymer anion exchange membrane for fuel cells. J. Membr. Sci. 2018, 556, 118-125.
    22. Chen, W.; Mandal, M.; Huang, G.; Wu, X.; He, G.; Kohl, P. A., Highly conducting anion-exchange membranes based on cross-linked poly(norbornene): ring opening metathesis polymerization. ACS Applied Energy Materials 2019, 2, 2458-2468.
    23. Szwarc, M.; Levy, M.; Milkovich, R., Polymerization initiated by electron transfer to monomer. a new method of formation of block polymers1. Journal of the American Chemical Society 1956, 78, 2656-2657.
    24. Mamlouk, M.; Scott, K., Effect of anion functional groups on the conductivity and performance of anion exchange polymer membrane fuel cells. J. Power Sources 2012, 211, 140-146.
    25. Isarov, S. A.; Lee, P. W.; Pokorski, J. K., “Graft-to” protein/polymer conjugates using polynorbornene block copolymers. Biomacromolecules 2016, 17, 641-648.
    26. Liu, F.; Long, Y.; Zhao, Q.; Liu, X.; Qiu, G.; Zhang, L.; Ling, Q.; Gu, H., Gallol-containing homopolymers and block copolymers: ROMP synthesis and gelation properties by metal-coordination and oxidation. Polymer 2018, 143, 212-227.
    27. Isono, T.; Ree, B. J.; Tajima, K.; Borsali, R.; Satoh, T., Highly ordered cylinder morphologies with 10 nm scale periodicity in biomass-based block copolymers. Macromolecules 2018, 51, 428-437.
    28. Chen, J.; Liu, M.-y.; Huang, Q.; Huang, L.; Huang, H.; Deng, F.; Wen, Y.; Tian, J.; Zhang, X.; Wei, Y., Facile preparation of fluorescent nanodiamond-based polymer composites through a metal-free photo-initiated RAFT process and their cellular imaging. Chem. Eng. J. 2018, 337, 82-90.
    29. Li, H.; Liu, H.; Nie, T.; Chen, Y.; Wang, Z.; Huang, H.; Liu, L.; Chen, Y., Molecular bottlebrush as a unimolecular vehicle with tunable shape for photothermal cancer therapy. Biomaterials 2018, 178, 620-629.
    30. Kim, M.-J.; Yu, Y.-G.; Kang, N.-G.; Kang, B.-G.; Lee, J.-S., Precise synthesis of functional block copolymers by living anionic polymerization of vinyl monomers bearing nitrogen atoms in the side chain. Macromol. Chem. Phys. 2017, 218, 1600445.
    31. Myers, S. B.; Register, R. A., Block copolymers synthesized by ROMP-to-anionic polymerization transformation. Macromolecules 2008, 41, 5283-5288.
    32. Yokoyama, N.; Kanazawa, A.; Kanaoka, S.; Aoshima, S., Synthesis of highly defined graft copolymers using a cyclic acetal moiety as a two-stage latent initiating site for successive living cationic polymerization and ring-opening anionic polymerization. Macromolecules 2018, 51, 884-894.
    33. Qiu, B.; Lin, B.; Qiu, L.; Yan, F., Alkaline imidazolium-and quaternary ammonium-functionalized anion exchange membranes for alkaline fuel cell applications. J. Mater. Chem. 2012, 22, 1040-1045.
    34. Zhang, H.; Zhou, Z., Alkaline polymer electrolyte membranes from quaternized poly (phthalazinone ether ketone) for direct methanol fuel cell. J. Appl. Polym. Sci. 2008, 110, 1756-1762.
    35. Smitha, B.; Sridhar, S.; Khan, A., Solid polymer electrolyte membranes for fuel cell applications—a review. J. Membr. Sci. 2005, 259, 10-26.
    36. Zhao, Z.; Gong, F.; Zhang, S.; Li, S., Poly (arylene ether sulfone) s ionomers containing quaternized triptycene groups for alkaline fuel cell. J. Power Sources 2012, 218, 368-374.
    37. Grew, K. N.; Chiu, W. K., A dusty fluid model for predicting hydroxyl anion conductivity in alkaline anion exchange membranes. J. Electrochem. Soc. 2010, 157, B327.
    38. Abdi, Z. G.; Chen, J. C.; Chiu, T. H.; Yang, H.; Yu, H. H., Synthesis of ionic polybenzimidazoles with broad ion exchange capacity range for anion exchange membrane fuel cell application. Journal of Polymer Science 2021, 59, 2069-2081.
    39. Chikh, L.; Delhorbe, V.; Fichet, O., (Semi-) Interpenetrating polymer networks as fuel cell membranes. J. Membr. Sci. 2011, 368, 1-17.
    40. Coppola, R.; Herranz, D.; Escudero-Cid, R.; Ming, N.; D’Accorso, N. B.; Ocón, P.; Abuin, G. C., Polybenzimidazole-crosslinked-poly (vinyl benzyl chloride) as anion exchange membrane for alkaline electrolyzers. Renewable Energy 2020, 157, 71-82.
    41. Lin, C. X.; Zhuo, Y. Z.; Hu, E. N.; Zhang, Q. G.; Zhu, A. M.; Liu, Q. L., Crosslinked side-chain-type anion exchange membranes with enhanced conductivity and dimensional stability. J. Membr. Sci. 2017, 539, 24-33.
    42. Zeng, L.; Zhao, T. S., An effective strategy to increase hydroxide-ion conductivity through microphase separation induced by hydrophobic-side chains. J. Power Sources 2016, 303, 354-362.
    43. Lin, C.; Liu, X.; Yang, Q.; Wu, H.; Liu, F.; Zhang, Q.; Zhu, A.; Liu, Q., Hydrophobic side chains to enhance hydroxide conductivity and physicochemical stabilities of side-chain-type polymer AEMs. J. Membr. Sci. 2019, 585, 90-98.
    44. Zhu, M.; Zhang, X.; Su, Y.; Wang, Y.; Wu, Y.; Yang, D.; Wang, H.; Zhang, M.; Zhang, M.; Chen, Q.; Li, N., Comb-shaped diblock copolystyrene for anion exchange membranes. J. Appl. Polym. Sci. 2019, 136, 47370.
    45. Mohanty, A. D.; Ryu, C. Y.; Kim, Y. S.; Bae, C., Stable elastomeric anion exchange membranes based on quaternary ammonium-tethered polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene triblock copolymers. Macromolecules 2015, 48, 7085-7095.
    46. Ren, X.; Price, S. C.; Jackson, A. C.; Pomerantz, N.; Beyer, F. L., Highly conductive anion exchange membrane for high power density fuel-cell performance. ACS applied materials & interfaces 2014, 6, 13330-13333.
    47. Weiber, E. A.; Jannasch, P., Anion-conducting polysulfone membranes containing hexa-imidazolium functionalized biphenyl units. J. Membr. Sci. 2016, 520, 425-433.
    48. Weiber, E. A.; Jannasch, P., Ion distribution in quaternary-ammonium-functionalized aromatic polymers: effects on the ionic clustering and conductivity of anion-exchange membranes. ChemSusChem 2014, 7, 2621-30.
    49. Lehmann, M.; Leonard, D.; Zheng, J.; He, L.; Tang, X.; Chen, X. C.; Lim, K. H.; Maurya, S.; Kim, Y. S.; Saito, T., Quaternized polynorbornene random copolymers for fuel cell devices. ACS Applied Energy Materials 2023, 6, 1822-1833.
    50. Mandal, M.; Huang, G.; Kohl, P. A., Highly conductive anion-exchange membranes based on cross-linked poly(norbornene): vinyl addition polymerization. ACS Applied Energy Materials 2019, 2, 2447-2457.
    51. Mandal, M.; Huang, G.; Kohl, P. A., Anionic multiblock copolymer membrane based on vinyl addition polymerization of norbornenes: Applications in anion-exchange membrane fuel cells. J. Membr. Sci. 2019, 570-571, 394-402.
    52. Zhang, H.; Zhou, Z., Alkaline polymer electrolyte membranes from quaternized poly(phthalazinone ether ketone) for direct methanol fuel cell. J. Appl. Polym. Sci. 2008, 110, 1756-1762.
    53. Smitha, B.; Sridhar, S.; Khan, A. A., Solid polymer electrolyte membranes for fuel cell applications—a review. J. Membr. Sci. 2005, 259, 10-26.
    54. Zhao, Z.; Gong, F.; Zhang, S.; Li, S., Poly(arylene ether sulfone)s ionomers containing quaternized triptycene groups for alkaline fuel cell. J. Power Sources 2012, 218, 368-374.
    55. Zhang, Y.; Cui, Z.; Zhao, C.; Shao, K.; Li, H.; Fu, T.; Na, H.; Xing, W., Synthesis and characterization of novel sulfonated poly(arylene ether ketone) copolymers with pendant carboxylic acid groups for proton exchange membranes. J. Power Sources 2009, 191, 253-258.
    56. Lee, H.-J.; Choi, J.; Han, J. Y.; Kim, H.-J.; Sung, Y.-E.; Kim, H.; Henkensmeier, D.; Ae Cho, E.; Jang, J. H.; Yoo, S. J., Synthesis and characterization of poly(benzimidazolium) membranes for anion exchange membrane fuel cells. Polym. Bull. 2013, 70, 2619-2631.
    57. Wang, L.; Magliocca, E.; Cunningham, E. L.; Mustain, W. E.; Poynton, S. D.; Escudero-Cid, R.; Nasef, M. M.; Ponce-González, J.; Bance-Souahli, R.; Slade, R. C., An optimised synthesis of high performance radiation-grafted anion-exchange membranes. Green Chemistry 2017, 19, 831-843.
    58. Omasta, T. J.; Wang, L.; Peng, X.; Lewis, C. A.; Varcoe, J. R.; Mustain, W. E., Importance of balancing membrane and electrode water in anion exchange membrane fuel cells. J. Power Sources 2018, 375, 205-213.
    59. Akiyama, R.; Yokota, N.; Miyatake, K., Chemically stable, highly anion conductive polymers composed of quinquephenylene and pendant ammonium groups. Macromolecules 2019, 52, 2131-2138.
    60. Miyake, J.; Taki, R.; Mochizuki, T.; Shimizu, R.; Akiyama, R.; Uchida, M.; Miyatake, K., Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells. Science Advances 2017, 3, eaao0476.
    61. Hu, C.; Park, J. H.; Kang, N. Y.; Zhang, X.; Lee, Y. J.; Jeong, S. W.; Lee, Y. M., Effects of hydrophobic side chains in poly(fluorenyl-co-aryl piperidinium) ionomers for durable anion exchange membrane fuel cells. Journal of Materials Chemistry A 2023, 11, 2031-2041.
    62. Pan, D.; Bakvand, P. M.; Pham, T. H.; Jannasch, P., Improving poly(arylene piperidinium) anion exchange membranes by monomer design. Journal of Materials Chemistry A 2022, 10, 16478-16489.
    63. Hagesteijn, K. F.; Jiang, S.; Ladewig, B. P., A review of the synthesis and characterization of anion exchange membranes. Journal of materials science 2018, 53, 11131-11150.
    64. Couture, G.; Alaaeddine, A.; Boschet, F.; Ameduri, B., Polymeric materials as anion-exchange membranes for alkaline fuel cells. Prog. Polym. Sci. 2011, 36, 1521-1557.
    65. Fujimoto, C.; Kim, D.-S.; Hibbs, M.; Wrobleski, D.; Kim, Y. S., Backbone stability of quaternized polyaromatics for alkaline membrane fuel cells. J. Membr. Sci. 2012, 423, 438-449.
    66. Zhang, X.; Shi, Q.; Chen, P.; Zhou, J.; Li, S.; Xu, H.; Chen, X.; An, Z., Block poly (arylene ether sulfone) copolymers tethering aromatic side-chain quaternary ammonium as anion exchange membranes. Polymer Chemistry 2018, 9, 699-711.
    67. Akiyama, R.; Yokota, N.; Nishino, E.; Asazawa, K.; Miyatake, K., Anion conductive aromatic copolymers from dimethylaminomethylated monomers: synthesis, properties, and applications in alkaline fuel cells. Macromolecules 2016, 49, 4480-4489.
    68. Mohanty, A. D.; Tignor, S. E.; Krause, J. A.; Choe, Y.-K.; Bae, C., Systematic alkaline stability study of polymer backbones for anion exchange membrane applications. Macromolecules 2016, 49, 3361-3372.
    69. Arges, C. G.; Ramani, V., Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes. Proceedings of the National Academy of Sciences 2013, 110, 2490-2495.
    70. Cope, A. C.; Trumbull, E. R., Olefins from amines: The Hofmann elimination reaction and amine oxide pyrolysis. In Organic Reactions, pp 317-493.
    71. Cope, A. C.; Mehta, A. S., Mechanism of the Hofmann elimination reaction: An ylide intermediate in the pyrolysis of a highly branched quaternary hydroxide. Journal of the American Chemical Society 1963, 85, 1949-1952.
    72. Arges, C. G.; Ramani, V., Investigation of cation degradation in anion exchange membranes using multi-dimensional NMR spectroscopy. J. Electrochem. Soc. 2013, 160, F1006-F1021.
    73. Qiu, B.; Lin, B.; Qiu, L.; Yan, F., Alkaline imidazolium- and quaternary ammonium-functionalized anion exchange membranes for alkaline fuel cell applications. J. Mater. Chem. 2012, 22, 1040-1045.
    74. Chempath, S.; Boncella, J. M.; Pratt, L. R.; Henson, N.; Pivovar, B. S., Density functional theory study of degradation of tetraalkylammonium hydroxides. The Journal of Physical Chemistry C 2010, 114, 11977-11983.
    75. Cheng, J.; He, G.; Zhang, F., A mini-review on anion exchange membranes for fuel cell applications: Stability issue and addressing strategies. Int. J. Hydrogen Energy 2015, 40, 7348-7360.
    76. Olsson, J. S.; Pham, T. H.; Jannasch, P., Functionalizing polystyrene with N-alicyclic piperidine-based cations via Friedel–Crafts alkylation for highly alkali-stable anion-exchange membranes. Macromolecules 2020, 53, 4722-4732.
    77. Pan, J.; Lu, S.; Li, Y.; Huang, A.; Zhuang, L.; Lu, J., High‐Performance alkaline polymer electrolyte for fuel cell applications. Adv. Funct. Mater. 2010, 20, 312-319.
    78. Tomoi, M.; Yamaguchi, K.; Ando, R.; Kantake, Y.; Aosaki, Y.; Kubota, H., Synthesis and thermal stability of novel anion exchange resins with spacer chains. J. Appl. Polym. Sci. 1997, 64, 1161-1167.
    79. Hibbs, M. R., Alkaline stability of poly(phenylene)-based anion exchange membranes with various cations. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1736-1742.
    80. Vijayakumar, V.; Nam, S. Y., Recent advancements in applications of alkaline anion exchange membranes for polymer electrolyte fuel cells. Journal of Industrial and Engineering Chemistry 2019, 70, 70-86.
    81. Getty, K.; Delgado-Jaime, M. U.; Kennepohl, P., Assignment of pre-edge features in the Ru K-edge X-ray absorption spectra of organometallic ruthenium complexes. Inorganica chimica acta 2008, 361, 1059-1059.
    82. Martinez-Arranz, S.; Albeniz, A. C.; Espinet, P., Versatile route to functionalized vinylic addition polynorbornenes. Macromolecules 2010, 43, 7482-7487.
    83. Leber, P.; Kidder, K.; Viray, D.; Dietrich‐Peterson, E.; Fang, Y.; Davis, A., Stereoselectivity in a series of 7‐alkylbicyclo [3.2. 0] hept‐2‐enes: Experimental and computational perspectives. J. Phys. Org. Chem. 2018, 31, e3888.
    84. Ye, Q.; Gao, T.; Wan, F.; Yu, B.; Pei, X.; Zhou, F.; Xue, Q., Grafting poly (ionic liquid) brushes for anti-bacterial and anti-biofouling applications. J. Mater. Chem. 2012, 22, 13123-13131.
    85. Rule, J. D.; Moore, J. S., ROMP reactivity of endo-and exo-dicyclopentadiene. Macromolecules 2002, 35, 7878-7882.
    86. Müller, K.; Kreiling, S.; Dehnicke, K.; Allgaier, J.; Richter, D.; Fetters, L. J.; Jung, Y.; Yoon, D. Y.; Greiner, A., Synthesis and rheological properties of poly (5‐n‐hexylnorbornene). Macromol. Chem. Phys. 2006, 207, 193-200.
    87. Wolf, W. J.; Lin, T.-P.; Grubbs, R. H., Examining the effects of monomer and catalyst structure on the mechanism of ruthenium-catalyzed ring-opening metathesis polymerization. Journal of the American Chemical Society 2019, 141, 17796-17808.
    88. Yoon, K.-H.; Kim, K. O.; Schaefer, M.; Yoon, D. Y., Synthesis and characterization of hydrogenated poly (norbornene endo-dicarboximide) s prepared by ring opening metathesis polymerization. Polymer 2012, 53, 2290-2297.
    89. Huang, Y.-C.; Wang, K.-L.; Lian, W.-R.; Liao, Y.-A.; Liaw, D.-J.; Lee, K.-R.; Lai, J.-Y., Synthesis of novel thermally stable electrochromic polynorbornenes containing symmetrical diarylamine and unsymmetrical triarylamine chromophores via ring-opening metathesis polymerisation. Polymer 2012, 53, 1849-1856.
    90. Hahn, S. F., An improved method for the diimide hydrogenation of butadiene and isoprene containing polymers. J. Polym. Sci., Part A: Polym. Chem. 1992, 30, 397-408.
    91. Zhang, M.; Liu, J.; Wang, Y.; An, L.; Guiver, M. D.; Li, N., Highly stable anion exchange membranes based on quaternized polypropylene. Journal of Materials Chemistry A 2015, 3, 12284-12296.
    92. Lynd, N. A.; Meuler, A. J.; Hillmyer, M. A., Polydispersity and block copolymer self-assembly. Prog. Polym. Sci. 2008, 33, 875-893.
    93. Selhorst, R.; Gaitor, J.; Lee, M.; Markovich, D.; Yu, Y.; Treichel, M.; Olavarria Gallegos, C.; Kowalewski, T.; Kourkoutis, L. F.; Hayward, R. C.; Noonan, K. J. T., Multiblock copolymer anion-exchange membranes derived from vinyl addition polynorbornenes. ACS Applied Energy Materials 2021, 4, 10273-10279.
    94. Bernado, P.; Svergun, D. I., Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. Molecular biosystems 2012, 8, 151-167.
    95. Bose, S.; Kuila, T.; Nguyen, T. X. H.; Kim, N. H.; Lau, K.-t.; Lee, J. H., Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Prog. Polym. Sci. 2011, 36, 813-843.

    無法下載圖示
    全文公開日期 2028/08/15 (校外網路)
    全文公開日期 2028/08/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE