簡易檢索 / 詳目顯示

研究生: 王正瑋
Cheng-Wei Wang
論文名稱: 使用少量訓練樣品進行鍍鎳金屬表面瑕疵檢測之深度學習
Deep Learning of Defect Inspection of Nickel-plated Metal Surfaces Using a Small Quantity of Training Samples
指導教授: 林清安
Ching-An Lin
口試委員: 李維楨
Wei-Chen Lee
張復瑜
Fuh-Yu Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 113
中文關鍵詞: 瑕疵檢測資料擴增深度學習卷積神經網路YOLO
外文關鍵詞: Defect inspection, Data augmentation, Deep learning, CNN, YOLO
相關次數: 點閱:239下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

人工智慧之深度學習技術已逐步應用於生產線上之產品瑕疵檢測,深度學習需使用大量影像訓練才有良好的辨識效果,然而在實際的產線中,瑕疵品相對良品的比例低很多,造成瑕疵品的訓練樣本數過少,導致深度學習的檢測效果不理想,如能克服此問題,將可大幅提升將深度學習應用於產線的可能性。本研究針對樣本數量不多的鍍鎳金屬片,提出利用旋轉法、分割法與增量標註法進行數據集擴增,然後藉由YOLO模型進行訓練與辨識,經過辨識後,影像辨識率達到87.5 %,接著搭配拼圖法影像辨識流程,將影像辨識率進一步提升至97.38 %。
鍍鎳金屬片之瑕疵檢測系統實際檢測結果顯示,良品之誤檢率為16.67 %、瑕疵品之漏檢率僅為1.54 %,而檢測準確率可達到95.62 %,證明本系統實際應用於檢測金屬片已有良好的檢測效果。


The technology of deep learning in artificial intelligence has been gradually applied to the inspection of products’ defects on a production line. Deep learning requires a lot of image data training to have a good recognition effect. However, in an actual production line, the quantity of defective products is much lower than that of the good products. Therefore the number of training samples is far from needed, which leads to the unsatisfactory inspection effect of deep learning. If this problem can be solved, the possibility of applying deep learning to a production line will be greatly improved. In this thesis, for the nickel-plated metal sheet with a small number of samples, it is proposed to use the rotation method, the segmentation method and the incremental labeling method to expand the data set, and then use the YOLO model for training and identification. After the identification, the image recognition rate reaches 87.5 %, and then use the puzzle image recognition process to further increase the image recognition rate to 97.38%.
The actual test results of the defect inspection system for nickel-plated metal sheets show that the false inspection rate of good products is 16.67%, the missed inspection rate of defective products is only 1.54%, and the inspection accuracy rate can reach 95.62%, which proves that the system has good effects on inspection of defects on the surface of nickel-plated metals.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 2 1.3 文獻探討 3 1.4 論文架構 14 第二章 鍍鎳金屬片之產線瑕疵影像與其瑕疵辨識率簡介 15 2.1 鍍鎳金屬片之產線瑕疵影像簡介 15 2.2 以深度學習辨識瑕疵影像 16 2.2.1 深度學習訓練之前處理 18 2.2.2 深度學習訓練與訓練後模型使用 19 2.3 不同YOLO模型之比較 22 2.3.1 各模型之收斂度評估 22 2.3.2 各模型之辨識時間評估 26 2.3.3 各模型之辨識率評估 27 2.4 影響辨識率之原因 28 第三章 少數量鍍鎳金屬片之深度學習 29 3.1 鍍鎳金屬片之瑕疵種類 29 3.2 收集鍍鎳金屬片瑕疵影像 32 3.3 影像資料量之擴增 37 3.3.1 以旋轉法進行影像資料量之擴增 38 3.3.2 以分割法進行影像資料量之擴增 41 3.3.3 綜合討論 44 3.4 以增量標註法進行瑕疵資料量之擴增 44 3.4.1 增量標註法之多段標註方式 46 3.4.2 增量標註法之分段標註方式 49 3.4.3 增量標註法之雙重標註方式 50 3.4.4 綜合討論 52 3.5 數據增強 52 3.5.1 常用之數據增強方法 53 3.5.2 Mosaic數據增強法 58 3.6 訓練瑕疵資料 63 3.7 訓練結果與瑕疵影像辨識率 69 3.8 資料量擴增對訓練時間及辨識率之影響 76 3.8.1 影像資料量擴增對訓練時間與辨識率之效果 76 3.8.2 瑕疵資料量擴增對訓練時間與辨識率之效果 77 3.8.3 綜合討論 78 3.9 以拼圖法影像辨識流程提升辨識率 79 3.9.1 拼圖法影像辨識流程 79 3.9.2 拼圖法對實際辨識率之影響 84 第四章 鍍鎳金屬片檢測效益驗證 87 4.1 瑕疵檢測之效益評估指標 87 4.2 鍍鎳金屬片之檢測流程及效益評估 88 4.3 結果討論 92 第五章 結論與未來研究方向 93 5.1 結論 93 5.2 未來研究方向 94 參考文獻 95

[1] Cai, N., Cen, G., Wu, J., Li, F., Wang, H. and Chen, X. (2018), “SMT solder joint inspection via a novel cascaded convolutional neural network,” IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 8, No. 4, pp. 670-677.
[2] Lin, H., Li, B., Wang, X., Shu, Y. and Niu, S. (2019), “Automated defect inspection of LED chip using deep convolutional neural network,” Journal of Intelligent Manufacturing, Vol. 30, No. 6, pp. 2525-2534.
[3] Taylor, L. and Nitschke, G. (2018), “Improving deep learning with generic data augmentation,” IEEE Symposium Series on Computational Intelligence, Nov. 18-21, 2018, Bengaluru, India, pp. 1542-1547.
[4] http://www.vision.caltech.edu/Image_Datasets/Caltech101/
[5] Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012), “Imagenet classification with deep convolutional neural networks,” Advances in neural information processing systems, Vol. 25, pp. 1097-1105.
[6] DeVries, T. and Taylor, G. W. (2017), “Improved regularization of convolutional neural networks with cutout,” arXiv:1708.04552.
[7] Zhang, H., Cisse, M., Dauphin, Y. N. and Lopez-Paz, D. (2017), “mixup: Beyond empirical risk minimization,” arXiv:1710.09412.
[8] Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J. and Yoo, Y. (2019), “Cutmix: Regularization strategy to train strong classifiers with localizable features,” International Conference on Computer Vision, Oct. 27-Nov. 2, 2019, Seoul, Korea, pp. 6023-6032.
[9] Bochkovskiy, A., Wang, C. Y. and Liao, H. Y. M. (2020), “Yolov4: Optimal speed and accuracy of object detection,” arXiv:2004.10934.
[10] Zhu, X., Liu, Y., Qin, Z. and Li, J. (2017), “Data augmentation in emotion classification using generative adversarial networks,” arXiv:1711.00648.
[11] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2014), “Generative adversarial nets,” International Conference on Neural Information Processing Systems, Dec. 8-13, 2014, Montreal, Canada, pp. 2672-2680.
[12] Zhu, J. Y., Park, T., Isola, P. and Efros, A. A. (2017), “Unpaired image-to-image translation using cycle-consistent adversarial networks,” International Conference on Computer Vision, Oct. 27-29, 2017, Venice, Italy, pp. 2223-2232.
[13] Cubuk, E. D., Zoph, B., Mané, D., Vasudevan, V. and Le, Q. V. (2019), “AutoAugment: Learning Augmentation Strategies From Data,” IEEE Conference on Computer Vision and Pattern Recognition, June 16-20, Long Beach, CA, USA, pp. 113-123.
[14] Zoph, B. and Le, Q. V. (2016), “Neural architecture search with reinforcement learning,” arXiv:1611.01578
[15] Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. (2016), “You Only Look Once: Unified, real-time object detection,” IEEE Conference on Computer Vision and Pattern Recognition, June 27-30, 2016, Las Vegas, NV, USA, pp. 779-788.
[16] He, Y., Song, K., Meng, Q. and Yan, Y. (2019), “An end-to-end steel surface defect detection approach via fusing multiple hierarchical features,” IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 4, pp. 1493-1504.
[17] Song, L., Li, X., Yang, Y., Zhu, X., Guo, Q. and Yang, H. (2018), “Detection of micro-defects on metal screw surfaces based on deep convolutional neural networks,” Sensors, Vol. 18, pp. 1-14.
[18] Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998), ”Gradient- based learning applied to document recognition,” Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278-2324.
[19] Sun, X., Gu, J., Huang, R., Zou, R. and Giron, P.,B. (2019), “Surface defects recognition of wheel hub based on improved faster R-CNN,” Electronics, Vol. 8, No. 5, pp. 481-497.
[20] S. Ren, K. He, R. Girshick and J. Sun(2017), “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” Institute of Electrical and Electronics Engineers Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, No. 6, pp. 1137-1149.
[21] Li, Y., Huang, H., Xie, Q., Yao, L. and Chen, Q. (2018), “Research on a surface defect detection algorithm based on MobileNet-SSD,” Applied Sciences, Vol. 8, No. 9, pp. 1678.-1695.
[22] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C-Y. and Berg, A.C. (2016), “SSD: Single Shot MultiBox Detector,” European conference on computer vision, Oct. 11-14, 2016, Amsterdam, The Netherlands, pp. 21-37.
[23] Li, J., Su, Z., Geng, J. and Yin, Y. (2018), “Real-time detection of steel strip surface defects based on improved yolo detection network,” IFAC-PapersOnLine, Vol. 51, No. 21, pp. 76-81.
[24] Chen, J., Liu, Z., Wang, H., Núñez, A. and Han, Z. (2017), “Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network,” IEEE Transactions on Instrumentation and Measurement, Vol. 67, No. 2, pp. 257-269.
[25] Bochkovskiy, A., Wang, C. Y. and Liao, H. Y. M. (2021), “Scaled-yolov4: Scaling cross stage partial network,” IEEE Conference on Computer Vision and Pattern Recognition, June 19-25, pp. 13029-13038.

無法下載圖示 全文公開日期 2026/07/29 (校內網路)
全文公開日期 2026/07/29 (校外網路)
全文公開日期 2026/07/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE