簡易檢索 / 詳目顯示

研究生: 胡家維
Chia-Wei Hu​
論文名稱: 具力回饋之欠驅動五指機器手掌設計與實現
Design and Implementation of an Underactuated Five-finger Robotic Hand with Force Feedback
指導教授: 蘇順豐
Shun-Feng Su
郭重顯
Chung-Hsien Kuo
口試委員: 陽毅平
Yee-Pien Yang
陳湘鳳
Shana Smith
林其禹
Chyi-Yeu Lin
蘇順豐
Shun-Feng Su
郭重顯
Chung-Hsien Kuo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 96
中文關鍵詞: 仿生手欠驅動機構纜線張力量測模組纜線控制
外文關鍵詞: Bionic hand, Underactuated mechanism, Cable Tension Measure Module, Cable driven
相關次數: 點閱:174下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本研究研發一具腱張力回饋之欠驅動式五指機械手掌設計,其以仿人手指結構設計出14個關節之五隻手指,其中除了拇指具有一屈曲與伸直關節與一個內外展關節外,其餘手指均採屈曲與伸直關節。為了簡化此一機械手掌之控制架構,除了拇指外,每一手指機構採用欠驅動設計,其透過單一步進馬達連接纜線便可驅動所有關節,並可順應所接觸物體表面,以更穩固方式握取物體;而拇指關節之兩個自由度則以直接耦合驅動;因此一共有6個控制自由度。此外,為了得知每一纜線腱張力,本研究開發一3公分長之纜線張力量測模組,以藉此得知每一手指使否已達穩定握取之條件。此一腱張力回饋之握取機制有別於傳統欠驅動式機械手掌其需要事先知道握取物品之尺寸與外型以決定纜線控制長度。因此,本研究所提出之腱張力回饋機制可應用於未知外型之物品握取,大大提升握取之效率與彈性。最後,本研究將此一五指機械手掌模組連接於六軸機器手臂末端,並進行未知外型之物品1.寶特瓶_1(近似長方體型)、2.寶特瓶_2(近似圓柱體型)、3.玩具球以及4.鴕鳥蛋這四種物體之抓取,證明此一腱張力回饋五指機械手掌在握取不同物體時,每隻機械手指所需的握力都不相同,在握取較硬物體時,如:寶特瓶_1、寶特瓶_2,各指的纜線張力量測模組上FSR的設定值分別為:拇指35牛頓、食指35牛頓、中指38牛頓、無名指30牛頓以及小指35牛頓,在握取較軟物體時,如玩具球、鴕鳥蛋,各指的腱張力量測模組上FSR的設定值分別為:拇指30牛頓、食指30牛頓、中指35牛頓、無名指25牛頓以及小指30牛頓,實驗結果驗證可依不同外型與材質的物體來設定各指所需的握力,不會拘限於某個特定的握力作抓取。


  This study develops a five-finger robotic hand with tendon force feedback. The proposed five-finger robotic hand is designed by imitating the structure of human’s hand and fingers, and it is composed of 5 fingers with 14 joints. The thumb finger consists of a flexion and extension joint and an abduction joint; the other four fingers are all designed as flexion and extension joints. Except for the thumb finger, all fingers use the underactuated mechanism to simplify the control architecture. For the finger with underactuated mechanism is controlled via a single cable trough a stepping motor. All the joints and linkages in the underactuated mechanism can be compliant to the object’s surface to perform a stable grasp. On the other hand, the two joins of the thumb finger use direct coupling mechanism. As a consequence, there are six controllable degrees of freedom in this system. To obtain the tendon force of a cable, a 3cm long cable tension measure module is specially developed to evaluate if each finger has stably grasped the object. The grasping mechanism of the tendon force feedback mechanism is different to the conventional position-based grasping, where the object shape is required in advance to defined to cable’s length to be controlled. Nevertheless, the proposed tendon force feedback can be applied to grasp the object without knowing the surface condition. Hence, the proposed tendon force feedback significantly improves the grasping efficiency and flexibility.
  Finally, the proposed five-finger robotic hand module is connected to the end effector of a six-axis robotic arm for the experiments of grasping two hard surface objects and two soft surface objects. The hard surface objects are a round rectangular bottle, a cylindrical shape bottle; the hard surface objects are a toy balls and an ostrich egg. For grasping hard surface objects, the tendon forces of the wires connecting to the thumb, index finger, middle finger, ring finger and little finger are 35N, 35N, 38N, 30 N, and 35 N, respectively. For grasping soft surface objects, the tendon forces of the wires connecting to the thumb, index finger, middle finger, ring finger and little finger are 30N, 30N, 35N, 25 N, and 30 N, respectively. The experiment results show that the adjustable tendon force on each finger could effective grasp the objects without knowing the shapes and dimension for grasping.

目錄 指導教授推薦書 i 口試委員審定書 ii 致謝 iii 摘要 iv Abstract v 目錄 vii 圖目錄 ix 表目錄 xiii 符號說明 xiv 第一章 緒論 1 1.1 研究背景與動機 1 1.2文獻回顧 2 1.2.1仿生手設計之相關研究 2 1.2.2壓力感測之相關研究 8 1.3論文架構 11 第二章 系統架構與方法 12 2.1 系統架構與操作 12 2.2 仿生手硬體架構 13 2.2.1 硬體設備 16 第三章 五指機械手掌與纜線張力量測模組設計與控制 23 3.1 五指機械手掌設計 23 3.1.1 欠驅動機構介紹 23 3.1.2 機械拇指設計 29 3.1.3 連桿運動分析 33 3.1.4 機械手掌設計 39 3.2 纜線控制系統 41 3.3 纜線張力量測模組設計 43 第四章 實驗結果與分析 47 4.1 仿生手控制 47 4.2 腱張力量測模組控制 57 4.3 握力測試 66 第五章 結論與未來研究方向 74 5.1 結論 74 參考文獻 76

參考文獻
[1] R. Challoo, J.P. Johnson, R.A. McLauchlan, and S.I. Omar, “Intelligent Control Of A Stanford JPL Hand Attached To A 4 DOF Robot Arm,” 1994 IEEE International Conference, Volume 2, Page(s):1274 – 1278, 2-5 Oct. 1994.
[2] J. D. Crisman, C. Kanojia and I. Zeid, "Graspar: A Flexible, Easily Controllable Robotic Hand," in IEEE Robotics & Automation Magazine, vol. 3, no. 2, pp. 32-38, June 1996.
[3] S. Jacobsen, E. Iversen, D. Knutti, R. Johnson and K. Biggers, "Design Of The Utah/M.I.T. Dextrous Hand," Proceedings. 1986 IEEE International Conference on Robotics and Automation, 1986, pp. 1520-1532.
[4] Li-Ren Lin and Han-Pang Huang, "Integrating Fuzzy Control Of The Dexterous National Taiwan University (NTU) Hand," in IEEE/ASME Transactions on Mechatronics, vol. 1, no. 3, pp. 216-229, Sept. 1996.
[5] 劉立偉,「NTU-Hand 多手指人工義手指之研製與整合」,國立台灣大學,碩士論文,民國九十年。
[6] H. Zhou, C. Tawk and G. Alici, "A 3D Printed Soft Robotic Hand With Embedded Soft Sensors For Direct Transition Between Hand Gestures And Improved Grasping Quality And Diversity," in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 550-558, 2022.
[7] H. Mnyusiwalla, P. Vulliez, J. -P. Gazeau and S. Zeghloul, "A New Dexterous Hand Based On Bio-Inspired Finger Design For Inside-Hand Manipulation," in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 46, no. 6, pp. 809-817, June 2016.
[8] C. -H. Xiong, W. -R. Chen, B. -Y. Sun, M. -J. Liu, S. -G. Yue and W. -B. Chen, "Design And Implementation Of An Anthropomorphic Hand For Replicating Human Grasping Functions," in IEEE Transactions on Robotics, vol. 32, no. 3, pp. 652-671, June 2016.
[9] P. Wattanasiri, P. Tangpornprasert and C. Virulsri, "Design Of Multi-Grip Patterns Prosthetic Hand With Single Actuator," in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 6, pp. 1188-1198, June 2018.
[10] S. H. Jeong, K. -S. Kim and S. Kim, "Designing Anthropomorphic Robot Hand With Active Dual-Mode Twisted String Actuation Mechanism And Tiny Tension Sensors," in IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1571-1578, July 2017.
[11] K. Egawa and S. Katsura, "A Design Of Tendon-Driven Mechanism For Flipping Motion On Robotic Finger," 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), 2021, pp. 1-6.
[12] T. Zhang, L. Jiang and H. Liu, "Design And Functional Evaluation Of A Dexterous Myoelectric Hand Prosthesis With Biomimetic Tactile Sensor," in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 7, pp. 1391-1399, July 2018.
[13] Jun Ueda, Y. Ishida, M. Kondo and T. Ogasawara, "Development Of The NAIST-Hand With Vision-Based Tactile Fingertip Sensor," Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, pp. 2332-2337.
[14] S. -H. Kim, S. Oh, K. B. Kim, Y. Jung, H. Lim and K. -J. Cho, "Design Of A Bioinspired Robotic Hand: Magnetic Synapse Sensor Integration For A Robust Remote Tactile Sensing," in IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3545-3552, Oct. 2018.
[15] N. Wettels, A. R. Parnandi, J. -H. Moon, G. E. Loeb and G. S. Sukhatme, "Grip Control Using Biomimetic Tactile Sensing Systems," in IEEE/ASME Transactions on Mechatronics, vol. 14, no. 6, pp. 718-723, Dec. 2009.
[16] R. A. Romeo, C. Lauretti, C. Gentile, E. Guglielmelli and L. Zollo, "Method For Automatic Slippage Detection With Tactile Sensors Embedded In Prosthetic Hands," in IEEE Transactions on Medical Robotics and Bionics, vol. 3, no. 2, pp. 485-497, May 2021.
[17] S. S. Karipott, B. D. Nelson, R. E. Guldberg and K. G. Ong, "A Wireless, Battery-Free Embedded Sensor For Monitoring Tension On A Suture Anchor," in IEEE Sensors Journal, vol. 22, no. 2, pp. 1173-1179, 15 Jan.15, 2022.
[18] M. Ohka, H. Kobayashi and Y. Mitsuya, "Sensing Characteristics Of An Optical Three-Axis Tactile Sensor Mounted On A Multi-Fingered Robotic Hand," 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp. 493-498.
[19] M. Shimojo, A. Namiki, M. Ishikawa, R. Makino and K. Mabuchi, "A Tactile Sensor Sheet Using Pressure Conductive Rubber With Electrical-Wires Stitched Method," in IEEE Sensors Journal, vol. 4, no. 5, pp. 589-596, Oct. 2004.
[20] Byungjune Choi, Hyouk Ryeol Choi and Sungchul Kang, "Development Of Tactile Sensor For Detecting Contact Force And Slip," 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp. 2638-2643.
[21] D. Gunji et al., "Grasping Force Control Of Multi-Fingered Robot Hand Based On Slip Detection Using Tactile Sensor," 2008 IEEE International Conference on Robotics and Automation, 2008, pp. 2605-2610.
[22] N. Wettels, A. R. Parnandi, J. -H. Moon, G. E. Loeb and G. S. Sukhatme, "Grip Control Using Biomimetic Tactile Sensing Systems," in IEEE/ASME Transactions on Mechatronics, vol. 14, no. 6, pp. 718-723, Dec. 2009.
[23] W. Fukui et al., "Fingertip Force And Position Control Using Force Sensor And Tactile Sensor For Universal Robot Hand II," 2011 IEEE Workshop on Robotic Intelligence In Informationally Structured Space, 2011, pp. 43-48.
[24] Price, A. D., A. Jnifene, and H. E. Naguib. "Design And Control Of A Shape Memory Alloy Based Dexterous Robot Hand." Smart Materials and Structures 16.4 (2007): 1401.
[25] Maeno, Takashi, and Toshiyuki Hino. "Miniature Five-Fingered Robot Hand Driven By Shape Memory Alloy Actuators." Proceedings of the 12th IASTED International Conference, Robotics and Applications. 2006.
[26] Palli, Gianluca, and Salvatore Pirozzi. "Optical Sensor For Angular Position Measurements Embedded In Robotic Finger Joints." Advanced Robotics 27.15 (2013): 1209-1220.
[27] S. A. Dalley, H. A. Varol and M. Goldfarb, "A Method For The Control Of Multigrasp Myoelectric Prosthetic Hands," in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 20, no. 1, pp. 58-67, Jan. 2012.
[28] H. Yousef, M. Boukallel and K. Althoefer, "Tactile Sensing For Dexterous In-Hand Manipulation In Robotics—A Review", Sens. Actuators A Phys., vol. 167, pp. 171-187, 2011.
[29] D. Zhang, H. Xu, P. B. Shull, J. Liu and X. Zhu, "Somatotopical Feedback Versus Non-Somatotopical Feedback For Phantom Digit Sensation On Amputees Using Electrotactile Stimulation", J. Neuroeng. Rehabil., vol. 12, pp. 1-11, 2015.
[30] C. Kuo, C. Chen, T. Chen and Y. Kuo, "E-Plus Solutions For A Bilateral Arm Trainer With Wireless Sensor Networks," in IEEE Sensors Journal, vol. 12, no. 5, pp. 1214-1225, May 2012.
[31] FSR Product Information |
http://www.sparkfun. com/datasheets/Sensors/Pressure/fsrguide.pdf
[32] Thayer, Nicholas, and Shashank Priya. "Design And Implementation Of A Dexterous Anthropomorphic Robotic Typing (DART) Hand." Smart Materials and Structures 20.3 (2011).
[33] Birglen, Lionel, Thierry Laliberté, and Clément M. Gosselin. Underactuated Robotic Hands. Vol. 40. Springer, 2007.
[34] Dukchan Yoon, Geon Lee, Sungon Lee and Y. Choi, "Underactuated Finger Mechanism For Natural Motion And Self-Adaptive Grasping Towards Bionic Partial Hand," 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), 2016, pp. 548-553.
[35] B. Massa, S. Roccella, M. C. Carrozza and P. Dario, "Design And Development Of An Underactuated Prosthetic Hand," Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), 2002, pp. 3374-3379 vol.4.
[36] 王耀進 (2019)。《機械原理 (第二版)》。中國:北京大學出版社。

無法下載圖示 全文公開日期 2024/09/30 (校內網路)
全文公開日期 2024/09/30 (校外網路)
全文公開日期 2024/09/30 (國家圖書館:臺灣博碩士論文系統)
QR CODE