簡易檢索 / 詳目顯示

研究生: 余東原
Tung-yuan Yu
論文名稱: 一種可做為銅矽間阻障層之超薄非晶氧化物薄膜的性質研究
Characterizations of an ultrathin amorphous oxide diffusion barrier for Cu metallization on Si
指導教授: 朱瑾
Jinn P. Chu
口試委員: 郭東昊
Dong-Hau Kuo
顏怡文
Yee-wen Yen
王錫福
Sea-Fue Wang
方昭訓
Jau-Shiung Fang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 100
中文關鍵詞: 擴散阻障層銅製程非晶薄膜
外文關鍵詞: diffusion barrier, Cu metallization, amorphous film
相關次數: 點閱:327下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要研究方向為利用氧化物(鈧酸鈥,HoScOx)非晶薄膜作為擴散阻障層以提升銅鍍層在矽上的高溫穩定性質。結果顯示HoScOx(x=3~4)具有高溫穩定性且為非晶薄膜,其結晶溫度高達900℃以上。在Cu/HoScOx/SiO2/Si擴散阻障層研究中,擴散阻障層的厚度估計約為3nm、5nm和10nm (簡稱為阻障層厚度)。最高穩定溫度退火1小時 (即電阻率未明顯上升之溫度)在3nm、5nm及10nm的阻障層厚度下,分別為600℃、700℃和700℃;不過在X-射線繞射光譜儀(XRD)分析結果顯示銅矽化合物早已於較低的溫度生成,實驗中利用不同入射角(glancing angle)的XRD分析,得知了銅矽化合物是由銅擴散至矽基材而產生的,採用較大的入射角時,其偵測到銅矽化合物的訊號溫度為比以電阻率為依據的最高穩定溫度(600℃)稍低。由掃描式電子顯微鏡(SEM)分析發現,銅矽化合物隨著溫度的提高而產生,且在800℃,銅膜表面形成了島嶼狀。HoScOx(3nm)經700℃高溫退火後,穿透式電子顯微鏡(TEM)影像分析結果得知原先明顯的界面已經變模糊且消失,說明了銅矽間已經開始擴散且產生了銅矽化合物。Cu/HoScOx/SiO2/Si多層膜結構在歐傑電子能譜儀(AES)縱深分析的結果中可清楚的觀察到層狀結構會隨退火溫度而變化。在附著力測試研究中,得知非晶薄膜HoScOx有效提升銅與矽之間的附著力。


In this study, sputtered Cu film thermal properties on Si substrate have been improved using an amorphous oxide (HoScOx) as the diffusion barrier layer. For this HoScOx (x=3~4) film only (hereafter called the HoScOx layer), it still possesses good thermal stability and amorphous structure after annealing. This barrier layer has high crystallization temperature of 900℃ and above. For the barrier studies in Cu/HoScOx/SiO2/Si, the maximum stable temperatures where the film resistivity is not changed are 600℃, 700℃ and 700℃ for barrier layers with thicknesses of 3nm, 5nm and 10nm, respectively. However, the copper silicides are formed already at low temperatures as shown in X-ray diffraction (XRD) results. For the different glancing angle XRD experiments, the appearance of Cu3Si peaks is used as an indicator for Cu diffusion into the substrate. Cu3Si peaks are appeared at relatively low temperatures in large glancing angle. In scanning electron microscopy (SEM) results, The Cu3Si is appeared and grown with increasing annealing temperature. After annealing at 800℃, the top of Cu film becomes isolated islands as a result of Cu-Si interactions. In transmission electron microscopy (TEM) results, annealing at 700℃ for 1 hour, the original smooth surface in as-deposited film became rough. It is said that the Cu and Si reacted each other and Cu3Si is formed. For Auger electron nanoscope (AES) results on Cu/HoScOx/SiO2/Si structures, it is clearly seen the multi-layer is changed during annealing temperature at high temperatures. In addition, the adhesion of Cu film on Si is enhanced significantly by placing HoScOx in between.

摘要 I Abstract II Acknowledgements III Table of contents IV Table lists VI Figure lists VII Chapter 1 Introduction 1 Chapter 2 Background 2 2.1 Cu metallization in integrated circuits 2 2.2 Barrier layer for Cu metallization 7 2.2.1 Barrier layer classification 7 2.2.2 Barrier materials 8 2.3 Rare-earth (RE) scandate thin films 12 2.4 Sputtering 13 2.4.1 Principle of sputtering 13 2.4.2 Sputtering systems 16 2.4.3 Magnetron sputtering 19 2.4.4 Nucleation and growth of sputter-deposited films 22 2.4.5 Thornton zone 24 2.5 Electrical property of thin films 26 2.6 Adhesion property of thin films 29 2.7 Motivation 31 Chapter 3 Experimental procedure 32 3.1 Target preparation 32 3.2 Thin film deposition 36 3.3 Annealing condition 39 3.4 Sample preparation for transmission electron microscope 40 3.5 Characterizations 43 3.5.1 Chemical analysis 43 3.5.2 Crystal structure 43 3.5.3 Microstructure analysis 43 3.5.4 Electrical properties 44 3.5.5 Adhesion test 44 Chapter 4 Results and discussion 46 4.1 Barrier layer HoScOx properties 46 4.1.1 Chemical analysis by EPMA 46 4.1.2 Crystallography (XRD) 47 4.2 Properties Cu/HoScOx/SiO2/Si stacked structures 50 4.2.1 Electrical property analysis 50 4.2.2 Crystallography (XRD) 55 4.2.3 SEM analysis 67 4.2.4 TEM analysis 73 4.2.5 AES analysis 80 4.2.6 Adhesion property 82 Chapter 5 Conclusions 83 References 84

1. Kim, D.-H., S.-L. Cho, K.-B. Kim, J.J. Kim, J.W. Park, and J.J. Kim, Diffusion barrier performance of chemically vapor deposited TiN films prepared using tetrakis-dimethyl-amino titanium in the Cu/TiN/Si structure, Applied Physics Letters, 1996: p. 4182.
2. Olowolafe, J.O., J. Li, J.W. Mayer, and E.G. Colgan, Effects of oxygen in TiNx on the diffusion of Cu in Cu/TiN/Al and Cu/TiNx/Si structures, Applied Physics Letters, 1991. 58(5): p. 469-471.
3. Li, B., T.D. Sullivan, T.C. Lee, and D. Badami, Reliability challenges for copper interconnects, Microelectronics Reliability, 2004. 44(3): p. 365-380.
4. Chae, G.S., H.S. Soh, W.H. Lee, and J.G. Lee, Self-passivated copper as a gate electrode in a poly-Si thin film transistor liquid crystal display, Journal of Applied Physics, 2001. 90(1): p. 411-415.
5. You, J., J. Kang, D. Kim, J. Jungho Pak, and C. Sik Kang, Copper metallization for crystalline Si solar cells, Solar Energy Materials and Solar Cells, 2003. 79(3): p. 339-345.
6. Plummer, J.D., M.D. Deal, and P.B. Griffin, Silicon VLSI Technology, Prentice Hall, New Jersey, 2000: p. 695.
7. Weber, E.R., Properties of Silicon, The Instituation of Electrical Engineers, London. 1985.
8. Murarka, S.P. and S.W. Hymes, Copper metallization for ULSI and beyond, Critical Reviews in Solid State and Materials Sciences, 20, 1995: p. 87.
9. Heng, S.-P., International Symposium on VLSI TSA. 1995: p. 164.
10. Hu, C.K. and J.M.E. Harper, Copper interconnections and reliability, Materials Chemistry and Physics, 1998. 52(1): p. 5-16.
11. ITRS, International Technology Roadmap for Semiconductors web site, <http://www.itrs.net/home.html>. 2007.
12. Nicolet, M.A., Diffusion barriers in thin films, Thin Solid Films, 1978. 52(3): p. 415-443.
13. Yang, J.Y., R.T. Hong, and M.J. Huang, A comparative molecular dynamics study of copper trench fill properties between Ta and Ti barrier layers, Materials Science in Semiconductor Processing, 2005. 8(6): p. 622-629.
14. Ghate, P.B., J.C. Blair, C.R. Fuller, and G.E. McGuire, Application of Ti: W barrier metallization for integrated circuits, Thin Solid Films, 1978. 53(2): p. 117-128.
15. Nowicki, R.S., J.M. Harris, M.A. Nicolet, and I.V. Mitchell, Studies of the Ti-W/Au metallization on aluminum, Thin Solid Films, 1978. 53(2): p. 195-205.
16. Uekubo, M., T. Oku, K. Nii, M. Murakami, K. Takahiro, S. Yamaguchi, T. Nakano, and T. Ohta, WNx diffusion barriers between Si and Cu, Thin Solid Films, 1996. 286(1-2): p. 170-175.
17. Kuo, Y.-L., J.-J. Huang, S.-T. Lin, C. Lee, and W.-H. Lee, Diffusion barrier properties of sputtered TaNx between Cu and Si using TaN as the target, Materials Chemistry and Physics, 2003. 80(3): p. 690-695.
18. Lin, C.-T. and K.-L. Lin, Preparation of Cu1-xTax films and the material interaction in the Si/Cu1-xTax/Cu structure, Materials Chemistry and Physics, 2003. 82(2): p. 306-315.
19. Liu, Y., S. Song, D. Mao, H. Ling, and M. Li, Diffusion barrier performance of reactively sputtered Ta-W-N between Cu and Si, Microelectronic Engineering, 2004. 75(3): p. 309-315.
20. Tsai, M.-H., J.-W. Yeh, and J.-Y. Gan, Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon, Thin Solid Films, 2008. 516(16): p. 5527-5530.
21. Hampden-Smith, M.J. and T.T. Kodas, The Chemistry of Metal CVD. 1994.
22. Shacham-Diamand, Y., Barrier layers for CU ULSI metallization, Journal of Electronic Materials, 2001. 30(4): p. 336-344.
23. Kuo, Y.-L., C. Lee, J.-C. Lin, Y.-W. Yen, and W.-H. Lee, Evaluation of the thermal stability of reactively sputtered (Ti, Zr)Nx nano-thin films as diffusion barriers between Cu and Silicon, Thin Solid Films, 2005. 484(1-2): p. 265-271.
24. Qu, X.-P., H. Lu, T. Peng, G.-P. Ru, and B.-Z. Li, Effects of preannealing on the diffusion barrier properties for ultrathin W-Si-N thin film, Thin Solid Films, 2004. 462-463: p. 67-71.
25. Majumder, P. and C.G. Takoudis, Investigation on the diffusion barrier properties of sputtered Mo/W--N thin films in Cu interconnects, Applied Physics Letters, 2007. 91(16): p. 162108-3.
26. Majumder, P. and C. Takoudis, Thermal stability of Ti/Mo and Ti/MoN nanostructures for barrier applications in Cu interconnects, Nanotechnology, 2008. 19(20): p. -.
27. Leu, L.C., D.P. Norton, L. McElwee-White, and T.J. Anderson, Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects, Applied Physics Letters, 2008. 92(11): p. 111917-3.
28. Lee, B.H. and K. Yong, Diffusion barrier properties of metalorganic chemical vapor deposition WNx compared with other barrier materials, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2004. 22(5): p. 2375-2379.
29. Lin, T.-Y., H.-Y. Cheng, T.-S. Chin, C.-F. Chiu, and J.-S. Fang, 5-nm-thick TaSiC amorphous films stable up to 750°C as a diffusion barrier for copper metallization, Applied Physics Letters, 2007. 91(15): p. 152908-3.
30. Tsai, M.-H., C.-W. Wang, C.-H. Lai, J.-W. Yeh, and J.-Y. Gan, Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization, Applied Physics Letters, 2008. 92(5): p. 052109-3.
31. Kwon, K.-W., H.-J. Lee, and R. Sinclair, Solid-state amorphization at tetragonal-Ta/Cu interfaces, Applied Physics Letters, 1999. 75(7): p. 935-937.
32. Kolawa, E., P.J. Pokela, J.S. Reid, J.S. Chen, R.P. Ruiz, and M.A. Nicolet, Sputtered Ta-Si-N diffusion barriers in Cu metallizations for Si, Electron Device Letters, IEEE, 1991. 12(6): p. 321-323.
33. Angyal, M.S., Y. Shacham-Diamand, J.S. Reid, and M.A. Nicolet, Performance of tantalum-silicon-nitride diffusion barriers between copper and silicon dioxide, Applied Physics Letters, 1995. 67(15): p. 2152-2154.
34. Reid, J.S., E. Kolawa, R.P. Ruiz, and M.A. Nicolet, Evaluation of amorphous (Mo, Ta, W)-Si-N diffusion barriers for <Si>Cu metallizations, Thin Solid Films, 1993. 236(1-2): p. 319-324.
35. Sun, X., J.S. Reid, E. Kolawa, and M.A. Nicolet, Reactively sputtered Ti-Si-N films I. Physical properties, Journal of Applied Physics, 1997. 81(2): p. 656-663.
36. No, J.-T., J.-H. O, and C. Lee, Evaluation of Ti-Si-N as a diffusion barrier between copper and silicon, Materials Chemistry and Physics, 2000. 63(1): p. 44-49.
37. Lin, S.-T. and C. Lee, Characteristics of sputtered Ta-B-N thin films as diffusion barriers between copper and silicon, Applied Surface Science, 2006. 253(3): p. 1215-1221.
38. Zhao, C., T. Witters, B. Brijs, H. Bender, O. Richard, M. Caymax, T. Heeg, J. Schubert, V.V. Afanas'ev, A. Stesmans, and D.G. Schlom, Ternary rare-earth metal oxide high-k layers on silicon oxide, Applied Physics Letters, 2005. 86(13): p. 132903-3.
39. Thomas, R., P. Ehrhart, M. Luysberg, M. Boese, R. Waser, M. Roeckerath, E. Rije, J. Schubert, S. Van Elshocht, and M. Caymax, Dysprosium scandate thin films as an alternate amorphous gate oxide prepared by metal-organic chemical vapor deposition, Applied Physics Letters, 2006. 89(23): p. 232902-3.
40. Afanas'ev, V.V., A. Stesmans, C. Zhao, M. Caymax, T. Heeg, J. Schubert, Y. Jia, D.G. Schlom, and G. Lucovsky, Band alignment between (100)Si and complex rare earth/transition metal oxides, Applied Physics Letters, 2004. 85(24): p. 5917-5919.
41. Sivasubramani, P., T.H. Lee, M.J. Kim, J. Kim, B.E. Gnade, R.M. Wallace, L.F. Edge, D.G. Schlom, F.A. Stevie, R. Garcia, Z. Zhu, and D.P. Griffis, Thermal stability of lanthanum scandate dielectrics on Si(100), Applied Physics Letters, 2006. 89(24): p. 242907-3.
42. Schuegraf, K.K., Handbook of Thin-Film Deposition Processes and Techniques: Principles, Methods, Equipment and Applications. 1988.
43. Chapman, B., Glow Discharge Process-Sputtering and Plasma Etching, Glow Discharge in Plasma. 1980.
44. Nyaiesh, A.R. and L. Holland, The dependence of deposition rate on power input for dc and rf magnetron sputtering, Vacuum, 1981. 31(7): p. 315-317.
45. Thornton, J.A., ”Physical Vapor Deposition” in ”Semiconductor Materials and process Technologies”. 1984.
46. Movchan, B.A. and A.V. Demchishin, Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide. 1969. 28(4): p. 653-60.
47. Thornton, J.A., High rate thick film growth, Annual Review of Materials Science, 1977. 7: p. 239-260.
48. Stavrev, M., D. Fischer, C. Wenzel, K. Drescher, and N. Mattern, Crystallographic and morphological characterization of reactively sputtered Ta, TaN and TaNO thin films, Thin Solid Films, 1997. 307(1-2): p. 79-88.
49. Zhou, X.W., R.A. Johnson, and H.N.G. Wadley, Molecular dynamics study of nickel vapor deposition: Temperature, incident angle, and adatom energy effects, Acta Materialia, 1997. 45(4): p. 1513-1524.
50. Ohring, M., The Materials Science of Thin Films. 1991.
51. 107 Cross Hatch Cutter, Operating Instructions.
52. Heeg, T., M. Wagner, J. Schubert, C. Buchal, M. Boese, M. Luysberg, E. Cicerrella, and J.L. Freeouf, Rare-earth scandate single- and multi-layer thin films as alternative gate oxides for microelectronic applications, Microelectronic Engineering, 2005. 80: p. 150-153.
53. Kim, K.H., D.B. Farmer, J.-S.M. Lehn, P.V. Rao, and R.G. Gordon, Atomic layer deposition of gadolinium scandate films with high dielectric constant and low leakage current, Applied Physics Letters. 2006, p. N.PAG.
54. Colombi, P., P. Zanola, E. Bontempi, and L.E. Depero, Modeling of glancing incidence X-ray for depth profiling of thin layers, Spectrochimica Acta Part B: Atomic Spectroscopy, 2007. 62(6-7): p. 554-557.
55. Hong, S.J., S. Lee, J.B. Park, H.J. Yang, Y.K. Ko, J.G. Lee, B.S. Cho, C.O. Jeong, and K.H. Chung, Enhanced adhesion and performance of the source/drain electrode using a single-layered Ag(Cu) film for an amorphous silicon thin-film transistor, Applied Physics Letters, 2003. 83: p. 3419.

QR CODE