簡易檢索 / 詳目顯示

研究生: 洪明豪
Ming-hao Hung
論文名稱: 鑭鈣鐵氧化物作為固態氧化物燃料電池陰極之相關性質
Lanthanum Calcium Ferrites as SOFC Cathode and Related Material Properties
指導教授: 蔡大翔
Dah-shyang Tsai
口試委員: 周振嘉
none
黃鶯聲
none
徐錦志
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 142
中文關鍵詞: 鑭鈣鐵氧化物陰極混合氧離子、電子導體熱膨脹導電率氧還原反應
外文關鍵詞: Lanthanum calcium ferrites, Cathode, Mixed ionic and electronic conductors, Thermal expansion, Electrical conductivity, Oxygen reduction reaction
相關次數: 點閱:206下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘 要
本論文探討混合導體鑭鈣鐵氧化物(La1-xCaxFeO3-δ,LCF,x=0.0-0.5)的晶體結構、顯微結構、熱膨脹性質、導電率與氧還原電化學反應催化活性。LaFeO3為斜方晶相的鈣鈦礦結構,空間群為Pnma,鈣取代鑭位置減少斜方晶相的晶格體積。
實驗樣品的緻密塊材(相對密度大於95%)製備方法,使用固態反應法合成(La1-xCax)FeO3-δ粉末,單軸冷壓成型的生胚於1320℃燒結。此燒結溫度接近於LCF的分解溫度,對於部分x 0.3的樣品,經過1270℃熱腐蝕之電鏡分析顯示有低鑭含量的第二相產生。
掃描室溫至1000℃範圍熱分析時,發現隨摻雜鈣含量x增加,熱重損失有增大趨勢。示差熱分析上則無發現x=0.2-0.4有相變中的吸熱事件。熱機械分析儀(TMA)研究顯示,x 0.2的樣品隨溫度上升,熱膨脹率呈線性增加;而x=0.4與x=0.5組成的熱膨脹曲線則有很奇特的折彎情形。熱膨脹分率的折彎行為應是受到第二相的影響。組成x 0.2的熱膨脹係數(TEC)介於10.8與11.7 ppm K-1。
四點探針法(four-probe method)量測LCF的導電率,發現隨摻雜鈣含量x增加,LCF的導電率會急遽上升再下降的情形;而溫度變化與LCF導電率之關係可用微小極子跳躍機制(small polaron hopping mechanism)加以描述。對SOFC而言,摻雜鈣含量25 mol %的組成是有希望成為優良的陰極材料,因為它能與8 mol % YSZ與10 mol % 的Dy、Er取代La2Mo2O9(LAMOX)電解質作熱匹配,以及在中溫(700-800℃)時,導電率高達160 S cm-1。
最後我們利用交流阻抗儀(AC impedance)分析陰極電化學氧還原反應(ORR)之觸媒活性,以陰極La0.75Ca0.25FeO3-δ與電解質La1.8Dy0.2Mo1.6W0.4O9之半電池實驗為例,驗證此方法可用於研究LCF基組成陰極活性。


ABSTRACT

The master thesis investigates the crystal structure, microstructure of mixed conductor La1-xCaxFeO3-δ (LCF, x=0.0-0.5), and their thermal expansion properties, conductivities, and catalytic activities in oxygen reduction reaction. LaFeO3 crystal is an orthorhombic perovskite, with space group Pnma. Substitution of La with Ca reduces the unit cell volume.
Dense monolithic samples were prepared from 1320C sintering of uniaxially pressed green bodies. The LCF powders were synthesized by solid-state reaction. The sintering temperature was necessary in densification of LCF, but it was also near the decomposition temperature of LCF. For the solid solutions of x0.3, their SEM micrographs revealed a secondary phase of low La content under 1270C thermal etching.
Thermal analysis in scanning the temperature up to 1000C revealed that the sample weight loss increased with the increasing calcium content. The differential thermal analysis did not show a sign of phase transformation. Thermal mechanical analysis revealed that the linear thermal expansion increased linearly with the temperature for the samples of x0.2, while bent strangely for the samples of x=0.4 and 0.5. It was speculated that the strange bending in thermal expansion was caused by the secondary phase. The thermal expansion coefficient of samples of 0.0x0.2 was measured between 10.8 and 11.7 ppm K-1。
The conductivities measured by the four-point method showed that the LCF conductivity increased with the calcium content first, then decreased. The temperature dependence of LCF conductivity can be described by small polaron hopping mechanism. In the composition range being investigated, LCF of 25% calcium content is a promising cathode composition since it is compatible with 8 mol% YSZ and 10 mol% Dy or Er substituted La2Mo2O9, and its conductivity reaches 160 S cm-1 at 700-800C.
In the end, we implemented AC impedance to analyze the catalytic activity of ORR reaction on LCF. An example of half-cell experiments using La0.75Ca0.25FeO3-δ as cathode and La1.8Dy0.2Mo1.6W0.4O9 as electrolyte was demonstrated. It appeared that the approach could be applied to analyze the catalytic activity of LCF-based cathode.

目錄 中文摘要....................................Ⅰ 英文摘要....................................Ⅲ 誌謝........................................Ⅴ 目錄........................................Ⅵ 圖目錄......................................Ⅹ 表目錄....................................ⅩⅠⅤ 第一章 緒論................................................................1 1.1 前言……………………………………………….….1 1.2 研究動機………………………………………….….6 第二章 理論基礎與文獻探討....................................7 2.1 燃料電池的簡介............................................................7 2.2 固態氧化物燃料電池(Solid Oxide Fuel Cell) .............9 2.2.1 固態氧化物燃料電池之架構.............................................9 2.2.2 固態氧化物燃料電池之運作原理...................................12 2.2.3 固態氧化物燃料電池之特色...........................................13 2.2.4 固態氧化物燃料電池之反應機制...................................16 2.2.5 固態氧化物燃料電池之電池組支撐方式.......................17 2.2.6 固態氧化物燃料電池之電池組幾何設計.......................18 2.3 鑭鉬氧化物(La2Mo2O9) .............................................21 2.4 La2Mo2O9系電解質的配合陽極................................24 2.5 La2Mo2O9系電解質的配合陰極................................25 2.6 陰極材料結構與電性..................................................29 2.6.1 鈣鈦礦結構.......................................................................29 2.6.2 鈣鈦礦結構之穩定性.......................................................31 2.6.3 Perovskite氧化物之導電率量測.....................................32 2.6.4 Perovskite氧化物之氧離子導電性.................................34 2.7 多孔陰極結構與極化現象..........................................36 2.7.1 陰極反應途徑...................................................................36 2.7.2 陰極之極化現象...............................................................37 2.8 電解質/陰極界面電化學............................................39 2.8.1 氧還原反應(ORR) ...........................................................39 2.9 陰極材料的選擇..........................................................45 第三章 實驗方法及步驟............................................49 3.1 實驗藥品以及儀器設備..............................................49 3.2 實驗步驟及流程..........................................................52 3.3 鑭鈣鐵氧化物的製備..................................................53 3.3.1 粉末烘乾、配粉與混粉.....................................................53 3.3.2 煆燒(Calcination) .............................................................53 3.3.3 塊材成形(Forming) ..........................................................54 3.3.4 塊材燒結(Sintering) .........................................................54 3.4 材料分析之試片製作與前處理..................................57 3.4.1 X光繞射光譜分析之試片...............................................57 3.4.2 場發掃描式電子顯微鏡結構觀察之試片.......................57 3.4.3 同步式熱重及熱差分析儀之試片...................................57 3.4.4 熱機械分析儀之試片.......................................................58 3.4.5 導電率量測之試片...........................................................58 3.5 材料性質測試..............................................................60 3.5.1 X光繞射分析...................................................................60 3.5.2 密度量測...........................................................................60 3.5.3 掃描式電鏡晶粒微觀分析..............................................60 3.5.4 EDS元素分析..................................................................61 3.5.5 同步式熱重及熱差分析儀(SDT)之量測.........................61 3.5.6 熱機械分析儀(TMA)量測................................................61 3.5.7 四點探針法(Four-probe method)之電性分析..................62 3.5.8 活化能(Activation energy)計算........................................63 第四章 結果與討論....................................................64 4.1 XRD繞射分析...........................................................65 4.2 燒結體密度................................................................73 4.3 顯微結構與元素分析................................................75 4.4 同步式熱重與熱差分析(DSC-TGA,SDT) .............84 4.5 (La1-xCax)FeO3-δ材料的熱膨脹性質研究.................86 4.6 鑭鈣鐵氧化物之導電率............................................89 4.7 鑭鈣鐵氧化物之氧還原電化學反應觸媒活性......100 4.7.1 三極式半電池的製作方式...........................................101 4.7.2 交流阻抗分析...............................................................103 4.7.3 電解質/陰極界面之顯微結構......................................112 第五章 結論............................................................113 參考文獻......................................................................116

參考文獻

1. T. Setoguchi, M. Sawano, K. Eguchi, and H. Arai, Solid State Ionics, 40-41, 502 (1990).
2. J. Schoonman, J. P. Dekker, J. W. Broers, and N. J. Kiwiet, Solid State Ionics, 46, 299 (1991).
3. V. E. J. van Dieten and J. Schoonman, Solid State Ionics, 57, 141 (1992).
4. C. C. Chen, M. M. Nasrallah, and H. U. Anderson, Solid State Ionics, 70-71, 101 (1994).
5. T. Hibino, A. Hashimoto, K.Asano, M. Yano, M. Suzuki, and M. Sano, Electrochem. Solid-State Lett., 5, A242 (2002).
6. Z. Shao and S. M. Haile, Nature, 431, 170 (2004).
7. F. H. van Heuveln and H. J. M. Bouwmeester, J. Electrochem. Soc., 144, 134 (1997).
8. B. C. H. Steele, Solid State Ionics, 134, 3 (2000).
9. S. P. Jiang, J. Power Sources, 124, 390 (2003).
10. T. Horita, K. Yamaji, M. Ishikawa, N. Sakai, H. Yokokama, T. Kawada, and T. Kato, J. Electrochem. Soc., 145, 3196 (1998).
11. J. Mizusaki, Y. Yonemura, H. Kamata, K.Ohyama, N. Mori, H. Takai, H. Tagawa, M. Dokiya, K. Naraya, T. Sasamoto, H. Inaba, and T. Hashimpto, Solid State Ionics, 132, 167 (2000).
12. W. R. Crove, Philos. Mag., 14, 127 (1839).
13. W. Nernst, Electrochem., 6, 41 (1899).
14. E. Baur and H. Preis, Electrochem., 43, 727 (1937).
15. N. Q. Minh, CHEMTECH, 21, 120 (1991).
16. Haruhiko Adachi, Tokyo Gas Co. representative, Development of Fuel Cell in Tokyo Gas, 2005, speech at National Taiwan Univ Sci &Tech.
17. AIChE annual conference 2005 Cincinnati Ohio, Institute Talk of Prof. R. Agrawal.
18. S. McIntosh and R. J. Gorte, Chem. Rev., 104, 4845 (2004).
19. S. Park, J. M. Vohs, and R. J. Gorte, Nature, 404, 265 (2000).
20. A. J. McEvoy, Solid State Ionics, 132, 159 (2000).
21. K. Huang, R. S. Tichy, and J. B. Goodenough, J. Am. Ceram. Soc., 81 [10], 2565 (1998).
22. K. Huang, R. S. Tichy, and J. B. Goodenough, J. Am. Ceram. Soc., 81 [10], 2576 (1998).
23. K. Huang, R. S. Tichy, and J. B. Goodenough, J. Am. Ceram. Soc., 81 [10], 2581 (1998).
24. K. Huang, M. Feng, and J. B. Goodenough, J. Electrochem. Soc., 144, 3620 (1997).
25. M. Feng, J. B. Goodenough, K. Huang, and C. Milliken, J. Power Sources, 63, 47 (1996).
26. N. Q. Minh, J. Am. Ceram. Soc., 76, 563 (1993).
27. S. C. Singhal, MRS Bulletin, March, 16 (2000).
28. K. Z. Fung, H. D. Baek, and A.V. Virkar, Solid State Ionics, 52, 199 (1992).
29. T. Ishihara, M. Honda, T. Shibayama, H. Minami, H. Nishiguchi, and Y. Takita, J, Am. Ceram. Soc., 145, 3177 (1993).
30. F. Goutenoire, Q. Isnard, R. Retoux, and P. Lacorre, Chem. Mater., 12, 2575 (2000).
31. S. C. Singhal, Proceeding of the 2ed International Symposium on Solid Oxide Fuel Cells, F. Gross, P. Zeghers, S.C. Singhal, and H. Iwahara, Eds., 25 (1991).
32. N. Q. Minh, C.R. Horne, F. Lin, and P. R. Staszak, Proceeding of the 1st International Symposium on Solid Oxide Fuel Cells, S.C. Singhal, Ed., New York city, U. S. A., 307 (1989).
33. H. Tagaki, H. Taira, A. Shiratori, S. Koyabashi, Y. Sungimoto, and K. Tomono, Proceeding of the 3rd International Symposium on Solid Oxide Fuel Cells, S. C. Singhal and H. Iwahara, Eds., Hawaii, U. S. A., 738 (1993).
34. A. O. Isenberg, Proceeding of the High Temperature Solid Oxide-Electrolytes Conference, New York city, U. S. A., 5 (1983).
35. 衣寶廉 “ Fuel Cell 燃料電池-高效、環保的發電方式” ,陳憲偉 校訂,五南出版社 (2003)。
36. D. S. Tsai, M. J. Hsieh, J. C. Tseng, and H. Y. Lee, J. Euro. Ceram. Soc., 25[4], 481 (2005).
37. S. Georges, F. Goutenoire, O. Bohnke, M. C. Steil, S. J. Skinner, H. D. Wiemhofer, and P. Lacorre, J. New Materials for Electrochemical Systems, 7, 51 (2004).
38. S. Georges, S. J. Skinner, P. Lacorre, and M. C. Steil, Dalton Trans., (Weekly, 2004) p. 3101.
39. Phase Diagrams for Ceramists, Vol III, The American Ceramic Society, (1975) , Fig. 4423.
40. Y. Takeda, R. Kanno, M. Noda, and O. Yamamoto, J. Electrochem. Soc., 134, 2656 (1987).
41. F. Donald Bloss, Crystallography and Crystal Chemistry, (Mineralogical Society of Amer, 1994) p.253.
42. W. H. Flygare and R. A. Huggins, J. Phy. Chem. Solids, 34, 1199 (1973).
43. N. Sakai, K. Yamaji, T. Horita, H. Yokokawa, T. Kawada, and M. Dokiya, J. Electrochem. Soc., 147, 3178 (2000).
44. K. Z. Fung and A. V. Virkar, Proceeding of the 4th International Symposium on Solid Oxide Fuel Cells, M. Dokiya, O. Yamamoto H. Tagawa and S.C. Singhal, Eds., 1105 (1995).
45. T. Kenjo and Y. Yamakoshi, Bull. Chem. Soc. Jpn., 65, 995 (1992).
46. J. W. Kim, A.V. Virkar, K. Z. Fung, K. Mehta, and S.C. Singhal, J. Electrochem. Soc., 146, 69 (1999).
47. D. Herbstritt, A. Weber, and E. Ivers-Tiff’ee, J. Europ. Cream. Soc., 21, 1813 (2001).
48. T. Tsai and S. A. Barnett, Solid State Ionics, 93, 207 (1997).
49. S. B. Adler , J. A. Lane and B. C. H. Steele, J. Electrochem. Soc., 143, 3554 (1996).
50. M. Godickemeier, K. Sasaki, L. J. Gauckler, and I. Riess, Solid State Ionics, 86-88, 691 (1996).
51. G. W. Coffey, J. S. Hardy, L. R. Pederson, P. C. Rieke, and E. C. Thomsen, Electrochem. Solid-State Lett., 6, A121 (2003).
52. B. C. H. Steele, Solid State Ionics, 86-88, 1223 (1996).
53. Y. Huang, K. Ahn, J. M. Vohs, and R. J. Gorte, J. Electrochem. Soc., 151[10], A1592 (2004).
54. V. V. Srdic, R. P. Omorjan, and J. Seydel, Mater. Sci. Eng., B 116, 119 (2005).
55. A. Mai, V. A. C. Haanappel, S. Uhlenbruck, F. Tietz, and D. Stover, Solid State Ionics, 176, 1341 (2005).
56. P. Ciambelli, S. Cimino, L. Lisi, M. Faticanti, G. Minelli, I. Pettiti, and P. Porta, Appl. Catal. B, 33, 193 (2001).
57. L. B. Kong and Y. S. Sheng, Sensors and Actuactors B, 30, 217 (1996).
58. H. Taguchi, Y. Masunaga, K. Hirota, and O. Yamaguchi, Mater. Res. Bull., 40, 773 (2005).
59. D. Kuscer, M. Hrovat, J. Holc, S. Bernik, and D. Kolar, J. Power Sources, 61, 161 (1996).
60. M. D. Anderson, J. W. Stevenson, and S. P. Simner, J. Power Sources, 129, 188 (2004).
61. S. P. Simner, J. P. Shelton, M. D. Anderson, and J. W. Stevenson, Solid State Ionics, 161, 11 (2003).
62. E. V. Tsipis, M. V. Patrakeev, V. V. Kharton, A. A. Yaremchenko, G. C. Mather, A. L. Shaula, I. A. Leonidov, V. L. Kozhevnikov, and J. R. Frade, Solid State Sci., 7, 355 (2005).
63. E. V. Bongio, H. Black, F. C. Raszewski, D. Edwards, C. J. McConville, and V. R. W. Amarakoon, J. Electroceramics, 14, 193 (2005).
64. G. Coffey, J. Hardy, O. Marina, L. Pederson, P. Rieke, and E. Thomsen, Solid State Ionics, 175, 73 (2004).
65. R. Chiba, F. Yoshimura, and Y. Sakurai, Solid State Ionics, 124, 281 (1999).
66. J. W. Stevenson, T. R. Armstrong, R. D. Carneim, L. R. Pederson, and W. J. Weber, J. Electrochem. Soc., 143, 2722 (1996).
67. S. J. Skinner, Inter. J. Inorgan. Mater., 3, 113 (2001).
68. G. Zhu, X. Fang, C. Xia, and X. Liu, Ceram. Inter., 31, 115 (2005).
69. R. Chiba, F. Yoshimura, and Y. Sakurai, Solid State Ionics, 152-153, 575 (2002).
70. S. P. Simner, J. F. Bonnett, N. L. Canfield, K. D. Meinhardt, V. L. Sprenkle, and J. W. Stevenson, Electrochem. Solid-State Lett., 5, A173 (2002).
71. K. Huang, H. Y. Lee, and J. B. Goodenough, J. Electrochem. Soc., 145, 3220 (1998).
72. A. N. Petrov, O. F. Kononchuk, A. V. Andreev, V. A. Cherepanov, and P. Kofstad, Solid State Ionics, 80, 189 (1995).
73. A. A. Yaremchenko, M. V. Patrakeev, V. V. Kharton, F. M. B. Marques, I. A. Leonidov, and V. L. Kozhevnikov, Solid State Sci., 6, 357 (2004).
74. J. Holc, D. Kuscer, M. Hrovat, S. Bernik, and D. Kolar, Solid State Ionics, 95, 259 (1997).
75. M. Mori and N. M. Sammes, Solid State Ionics, 146, 301 (2002).
76. B. Phillips, and A. Muan, J. Am. Ceram. Soc., 41 [11] (1958) 449.
77. N. Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells, (Elsevier, Amsterdam, 1995) p.117.
78. S. Kim, Y. L. Yang, R. Christoffersen, and A. J. Jacobson, Solid State Ionics, 104, 57 (1997).
79. D. P. Karim and A. T. Aldred, Phys. Rev. B, 20, 2255 (1979).
80. S. Georges, F.Goutenoire, Y. Laligant, and P. Lacorre, J. Mater. Chem., 13, 2317 (2003).
81. Y. J. Leng, S. H. Chen, K. A. Khor, and S. P. Jiang, Inter. J. Hydrogen Energy, 29, 1025 (2004).
82. J. Liu, A. C. Co, S. Paulson, and V. I. Birss, Solid State Ionics, 177, 377 (2006).

QR CODE