簡易檢索 / 詳目顯示

研究生: 李沛宸
Pei-Chen Li
論文名稱: 以NiO/TiO2程序於紫外光照射下還原氣相二氧化碳至甲烷之研究
Photocatalytic Reduction of Carbon Dioxide to Methane in Gas Phase under UV Light Illumination using NiO/TiO2
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧洋
Young Ku
蔣本基
Pen-Chi Chiang
曾迪華
Dyi-Hwa Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 116
中文關鍵詞: 氧化鎳/二氧化鈦二氧化碳甲烷光還原UV程序
外文關鍵詞: NiO/TiO2, carbon dioxide, methane, photocatalytic reduction, UV process
相關次數: 點閱:313下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用氧化鎳和二氧化鈦在紫外線程序中光還原二氧化碳,並分別探討初始二氧化碳濃度、相對溼度與不同重量濃度比的氧化鎳和二氧化鈦。除此之外,觸媒特性用BET, UV-visible, XRD 和SEM 來分析。
在這程序中,初始二氧化碳濃度為影響二氧化碳光還原反應之重要因素。由實驗結果來看,可得知反應迅速。約於120分鐘後,二氧化碳濃度會維持在一樣的濃度。實驗結果顯示不同濃度比的氧化鎳和二氧化鈦在紫外線程序中光還原二氧化碳,在反應條件為初始二氧化碳濃度為600 ppm和相對溼度是10%皆可產生最高的甲烷產量。
另一方面,相對濕度和不同劑量的氧化鎳也會影響甲烷的產量。結果顯示甲烷產量會隨著相對濕度和氧化鎳劑量增加。然而,更進一步增加相對濕度和氧化鎳劑量會減少甲烷的產量,因為過量水含量會影像觸媒的活性位置而20wt% 氧化鎳和二氧化碳透過BET, UV-visible結果顯示會影響孔洞體積,能帶隙和光觸媒活性。
本研究初步認為,以利用氧化鎳和二氧化鈦在紫外線程序中光還原二氧化碳,其最適操作條件為:初始二氧化碳濃度600ppm、10wt% 氧化鎳和二氧化鈦和相對溼度10%。在此操作條件下,甲烷最高產量為400 ppm/(gcatalyst)。


Photocatalytic reduction of carbon dioxide in gas phase by UV illumination and NiO/TiO2 process was studied under various initial carbon dioxide concentration, relative humidity, and coupled NiO dosage to evaluate the production of methane. In addition of that, the catalyst was detected by X-ray diffraction (XRD), field emission scanning electron (FE-SEM) microscope, UV-vis diffuse reflectance spectrometer (UV-DRS) and BET surface area analyzer.
In this system, the initial carbon dioxide concentration is a significant factor to effect the photocatalytic reduction of carbon dioxide. As can be seen, this experiment is continuous reaction. And, this result presents that photoreduction of CO2 reacts quickly. After around 120 minutes, the carbon dioxide concentration keeps in the same concentration. The experimental results reveal that photoreduction of carbon dioxide using different loading of NiO on TiO2 surface can produce the highest amount of methane at initial 600 ppm carbon dioxide when the relative humidity is 10%. However, it also shows that initial carbon dioxide concentration limits the product formation once the CO2 concentration is too high.
On the other hand, the relative humidity and coupled NiO dosage influence the production of methane. Results show that the production of methane increased with increasing relative humidity and couple NiO dosage. However, further addition of relative humidity and couple NiO dosage decrease the amount of methane because of the excessive of water content can influence the activated site and 20wt% NiO/TiO2 influence the pore size volume, energy gap and photocatalytic activity through BET surface area analyzer and UV-vis diffuse reflectance spectrometer (UV-DRS) result.
In this study, the optimum operating conditions for photocatalytic reduction of carbon dioxide in gas phase by UV illumination and NiO/TiO2 process is as following: initial carbon dioxide concentration 600 ppm, 10wt% NiO/TiO2, and relative humidity 45%. According to the conditions, the maximum amount of methane is 400 ppm/(gcatalyst).

Abstract I 中文摘要 III Table of Content VI List of Figure IX List of Table XII List of Symbol XIII Chapter 1 1 Introduction 1 1.1 Background 1 1.2 Objectives and scope 3 Chapter 2 4 Literature Review 4 2.1 Photocatalytic Reduction of carbon dioxide 4 2.1.1 Fundamentals of Photocatalytic CO2 Reduction in Gas Phase 5 2.1.2 Reaction Mechanism of Photocatalytic CO2 reduction 7 2.1.3 Photoreactors for Photocatalytic Reduction of CO2 11 2.2 Photocatalyst for Photocatalytic Reduction of CO2 16 2.2.1 Titaninum Dioxide-based Photocatalyst 16 2.2.2 Coupling Photocatalyst 18 2.2.3 Preparation of Photocatalyst 22 2.2.4 Development of Catalyst Supports 24 2.2.5 Performance Evaluation of Photocatalytic Activity 26 2.3 Operating Parameters on Photocatalytic CO2 Reduction 28 2.3.1 Effect of Initial Carbon Dioxide Concentration 28 2.3.2 Effect of Relative Humidity 31 2.3.3 Effect of Various NiO Dosages 34 Chapter 3 36 Materials and Experiments 36 3.1 Materials 36 3.2 Experimental Instruments and Apparatus 37 3.2.1 Experimental Instruments 37 3.2.2 Experimental Apparatus 38 3.3 Experimental Procedures 40 3.3.1 Experimental Framework 40 3.3.2 Analytic Methods 42 3.3.3 Preparation of NiO/TiO2 44 3.3.4 Characterization Analysis of NiO/TiO2 Photocatalyst on Glass 45 Chapter 4 47 Results and Discussion 47 4.1 Background Experiments 47 4.1.1 Stability of Carbon Dioxide in Gas Phase 48 4.1.2 Photolysis of Carbon Dioxide in Gas Phase 49 4.1.3 Measurement of Light Intensity 51 4.2 Characterization of NiO/TiO2 Photocatalyst 52 4.2.1 X-ray Diffraction (XRD) Analysis 52 4.2.2 Specific Surface Area Measurement 53 4.2.3 UV-vis Diffuse Reflectance Spectra (DRS) Analysis 55 4.2.4 Scanning Electron Microscopy (SEM) Analysis 58 4.3 Photocatalytic Reduction of CO2 in Gas Phase Using NiO/TiO2 62 4.3.1 Effect of Initial Carbon Dioxide Concentration 62 4.3.2 Effect of Relative Humidity 70 4.3.3 Effect of Coupled NiO Dosage 76 Chapter 5 79 Conclusion and Recommendation 79 Reference 82

Ahmad B. A.; Fatemi, S. and Salehi, Z., “Synthesis of Nanocomposite CdS/TiO2 and Investigation of Its Photocatalytic Activity for CO2 Reduction to CO and CH4 under Visible Light Irradiation,” J. CO2 Util., Vol. 7, pp. 23-29 (2014).
Ahmed, M. A., “Synthesis and Structural Features of Mesoporous NiO/TiO2 Nanocomposites Prepared by Sol–gel Method for Photodegradation of Methylene Blue Dye,” J. Photochem. Photobiol., A, Vol. 238, pp. 63-70 (2012).
Ahmed, S., Rasul, M.G., Brown, R. and Hashib, M.A., “Influence of Parameters on the Heterogeneous Photocatalytic Degradation of Pesticides and Phenolic Contaminants in Wastewater: A Short Review,” J. Environ. Manage., Vol. 92 , pp. 311–330 (2011)
Akpan, U. G. and Hameed, B. H., “The Advancements in Sol-gel Method of Doped-TiO2 Photocatalysts.,” Appl. Catal., A., Vol. 375, no. 1, pp. 1-11 (2010).
Alper, E., and Orhan, O. Y., “CO2 Utilization: Developments in Conversion Processes,” Pet., Vol. 3, pp. 109-126 (2017)
Alxneit, I., and Corboz, M., “Influence of Photoadsorbed O2 on the Photoreduction of CO2 with H2O at the Surface of TiO2,” J. Phys. IV., Vol. 9, pp. 295-299 (1999).
Ameen, M. M. and Raupp, G. B., “Reversible Catalyst Deactivation in the Photocatalytic Oxidation of Dilute Oxylene in Air.” J. Catal., Vol. 184, No. 1, pp. 112-122 (1999).
Babu, S. G., Vinoth, R., Praveen Kumar, D., Shankar, M. V., Chou, H. L., Vinodgopal, K., and Neppolian, B., “Influence of Electron Storing, Transferring and Shuttling Assets of Reduced Graphene Oxide at the Interfacial Copper Doped TiO2 p-n Heterojunction for Increased Hydrogen Productio,” Nanoscale, Vol. 7, No. 17, pp. 7849-7857 (2015).
Balasubramanian, G., Dionysiou, D. D., Suidan, M. T., Baudin, I. and Laîné, J. M., “Evaluating the Activities of Immobilized TiO2 Powder Films for the Photocatalytic Degradation of Organic Contaminants in Water.” Appl. Catal., B., Vol. 47, No. 2, pp. 73-84. (2004).
Bi, F., Ehsan, M. F., Liu, W. and He, T., “Visible-Light Photocatalytic Conversion of Carbon Dioxide into Methane using Cu2O/TiO2 Hollow Nanospheres,” Chin J Chem., Vol. 33, No. 1, pp. 112-118 (2015).
Braslavsky, S. E., Braun, A. M., Cassano, A. E., Emeline, A. V., Litter, M. I., Palmisano, L. and Serpone, N., “Glossary of Terms used in Photocatalysis and Radiation Catalysis,” Pure Appl. Chem., Vol. 83, No. 4, pp. 931-1014 (2011).
Brito, J. F. D., and Zanoni, M. V. B., “On the Application of Ti/TiO2/CuO n-p Junction Semiconductor: a Case Study of Electrolyte, Temperature and Potential Influence on CO2 Reduction,” Chem. Eng. J., Vol. 318, pp. 264-271 (2016).
Cassano, A.E. and Alfano, O.M., “Reaction Engineering of Suspended Solid Heterogenous Photocatalytic Reactors,” Catal. Today, Vol. 58, pp. 167–197 (2013).
Chang, P. W., “Treatment of Isopropanol in Gaseous Phase by Photocatalytic Process with Applied Bias Potential.” Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei (2008).
Chen, B. R., Nguyen, V. H., Wu, J. C. S., Martin, R. and Kočí, K. “Production of Renewable Fuels by the Photohydrogenation of CO2: Effect of the Cu Species Loaded onto TiO2 Photocatalysts,” Phys. Chem. Chem. Phys., Vol. 18, No. 6, pp. 4942-4951 (2016).
Chen, B. R., Nguyen, V. H., Wu, J. C. S., Martin, R. and Kočí, K. “Production of Renewable Fuels by the Photohydrogenation of CO2: Effect of the Cu Species Loaded onto TiO2 Photocatalysts,” Phys. Chem. Chem. Phys., Vol. 18, No. 6, pp. 4942-4951 (2016).
Chen, C. J., Liao, C. H., Hsu, K. C., Wu, Y. T. and Wu, J. C. S., “P-N Junction Mechanism on Improved NiO/TiO2 Photocatalyst.,” Catal. Commun., vol. 12, no. 14, pp. 1307-1310 (2011).
Chen, X. and Mao, S. S., “Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and Applications,” Chem. Rev., Vol. 107, No. 7, pp. 2891-959 (2007).
Chong, M. N., Jin, B., Chow, C.W.K. and Saint, C., “Recent Developments in Photocatalytic Water Treatment Technology: A Review,” Wate Res., Vol. 44, pp. 2997–3027 (2010)
Chou, Y. C., “Selective Reduction of NO in Air Streams by Photocatalytic Process with Ammonia over TiO2.” Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei (2011).
Chowdhury, P., Athapaththu, S., Elkamel, A. and Ray, A. K., “Visible-Solar-Light-Driven Photo-Reduction and Removal of Cadmium Ion with Eosin Y-Sensitized TiO2 in Aqueous Solution of Triethanolamine.” Sep. Purif. Technol., Vol. 174, pp. 109-115 (2017).
Collado, L., Jana, P., Sierra, B., Coronado, J. M., Pizarro, P., Serrano, D. P., and de la Peña O'Shea, V. A., “Enhancement of Hydrocarbon Production via Artificial Photosynthesis due to Synergetic Effect of Ag Supported on TiO2 and ZnO Semiconductors,” Chem. Eng. J., Vol. 224, No. 1, pp. 128-135 (2013).
Colmenares, J. C., Luque, R., Campelo, J. M., Colmenares, F., Karpiński, Z. and Romero, A. A., “Nanostructured Photocatalysts and Their Applications in the Photocatalytic Transformation of Lignocellulosic Biomass: An Overview,” Mater., Vol. 2, No. 4, pp. 2228-2258 (2009).
Deng, Q. R., Xia, X. H., Guo, M. L., Gao, Y. and Shao, G., “Mn-Doped TiO2 Nanopowders with Remarkable Visible Light Photocatalytic Activity,” Mater. Lett., Vol. 65, No.13, pp. 2051-2054 (2011).
Deng, Y., Tang, L., Zeng, G., Dong, H., Yan, M., Wang, J., Hu, W., Wang, J., Zhou, Y. and Tang, J., “Enhanced Visible Light Photocatalytic Performance of Polyaniline Modified Mesoporous Single Crystal TiO2 Microsphere,” Appl. Surf. Sci., Vol. 387, pp. 882-893 (2016).
Di Valentin, and C.; Selloni, A., “Bulk and Surface Polarons in Photoexcited Anatase TiO2.” J. Phys. Chem. Lett., Vol. 2, No. 17, pp. 2223-2228 (2011).
Dibble, L. A. and Raupp, G. B., “Kinetics of the Gas-Solid Heterogeneous Photocatalytic Oxidation of Trichloroethylene by near Uv Illuminated Titanium Dioxide.” Catal. Lett., Vol. 4, No. 4-6, pp. 345-354 (1990).
Dilla, M., Schlögl, R. and Strunk, J., “Photocatalytic CO2 Reduction under Continuous Flow High-Purity Conditions: Quantitative Evaluation of CH4 Formation in the Steady-State,” ChemCatChem., Vol. 9, No. 4, pp. 696-704 (2017).
Duygulu, N. E., “Effect of R.F. Power Variation on Gallium doped Zinc Oxide Thin Films.” Vac., Vol, 120, pp. 19-27 (2015).
El-Kalliny, A. S., Ahmed, S. F., Rietveld, L. C. and Appel, P. W. “Immobilized Photocatalyst on Stainless Steel Woven Meshes Assuring Efficient Light Distribution in a Solar Reactor.” Drinking Water Eng. Sci., Vol. 7, No. 1, pp. 41-52 (2014).
Fan, W., Zhang, Q. and Wang, Y., “Semiconductor-based Nanocomposites for Photocatalytic H2 Production and CO2 Conversion,” Phys. Chem. Chem. Phys., Vol. 15, No. 8, pp. 2632-2649 (2013).
Folger, H. S., “Elements of Chemical Reaction Engineering Fourth Edition,” Canada: Pearson. College. Div. (2006).
Fujishima, A. and Honda, K., “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nat., Vol. 238, No. 5358, pp. 37-38 (1972).
Fujita, S. I.,; Kawamori, H., Honda, D., Yoshida, H. and Arai, M., “Photocatalytic Hydrogen Production from Aqueous Glycerol Solution using NiO/TiO2 Catalysts: Effects of Preparation and Reaction Conditions,” Appl. Catal., B., Vol. 181, pp. 818-824 (2016).
Galli, F., Compagnoni, M., Vitali, D., Pirola, C., Bianchi, C. L., Villa, A., Prati, L., and Rossetti, I., “CO2 Photoreduction at High Pressure to Both Gas and Liquid Products over Titanium Dioxide,” Appl. Catal., B., Vol. 200, pp. 386-391 (2017).
Gumy, D., Rincon, A. G., Hajdu, R. and Pulgarin, C. “Solar Photocatalysis for Detoxification and Disinfection of Water: Different Types of Suspended and Fixed Tio2 Catalysts Study.” Sol. Energy., Vol. 80, No. 10, pp. 1376-1381 (2006).
Habisreutinger, S. N., Schmidt-Mende, L., and Stolarczyk, J. K., “Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors,” Angew. Chem., Vol. 52, No. 29, pp. 7372-7408 (2013).
Hanini, F., Bouabellou, A., Bouachiba, Y., Kermiche, F., Taabouche, A., Hemissi, M., and Lakhdari, D., “Structural, Optical and Electrical Pproperties of TiO2 Thin Films Synthesized by Sol–gel Technique,” J. Eng. Mater. Technol., Vol. 3, pp. 21-28 (2013).
Hanini, F., Bouabellou, A., Bouachiba, Y., Kermiche, F., Taabouche, A., Hemissi, M., and Lakhdari, D., “Structural, Optical and Electrical Pproperties of TiO2 Thin Films Synthesized by Sol–gel Technique,” J. Eng. Mater. Technol., vol. 3, pp. 21-28 (2013).
Hou, W. M., “Optical Fiber and Photoelectrochemical Reactor for the Decomposition of Gaseous Isopropanol in Air Stream by UV/TiO2 Process,” Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei (2012)
Huang, Z. F., Cheng, X. D., Dong, P. M. and Zhang, X. W., “Effect of Electric Field on CO2 Photoreduction by TiO2 Film.” J. Electron. Mater., Vol. 46, No. 2 pp. 999-1004 (2017).
Hurst, T. F., Cockerill, T. T. and Florin, N. H., “Life Cycle Greenhouse Gas Assessment of a Coal-fired Power Station with Calcium Looping CO2 Capture and Offshore Geological Storage.” Energy Environ. Sci., Vol. 5, No. 5, pp. 7132-7150 (2012).
Hurum, D. C., Agrios, A. G., Gray, K. A., Rajh, T. and Thurnauer, M. C., “Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 using EPR,” J. Phys. Chem. B., Vol. 107, No. 19, pp. 4545-4549 (2003).
Hussain, M.; Akhter, P.; Russo, N. and Saracco, G., “New Optimized Mesoporous Silica Incorporated Isolated Ti Materials Towards Improved Photocatalytic Reduction of Carbon Dioxide to Renewable Fuels,” Chem. Eng. J., Vol. 278, pp. 279-292 (2015).
Ibupoto, Z. H., Abbasi, M. A., Liu, X., and AlSalhi, M. S., Willander, M., “The Synthesis of NiO/TiO2 Heterostructures and Their Valence Band Offset Determination,” J. Nanomater., Vol. 2014, pp. 1-6 (2014).
Ibusuki, T. and Takeuchi, K., “Toluene Oxidation on U.V.-Irradiated Titanium Dioxide with and without O2, NO2 or H2O at Ambient Temperature." Atmos. Environ., Vol. 20, No. 9, pp.1711-1715 (1986).
Indrakanti, V. P., Kubicki, J. D. and Schobert, H. H., “Photoinduced Activation of CO2 on Ti-Based Heterogeneous Catalysts: Current State, chemical physics-based insights and outlook,” Energy. Environ. Sci., Vol. 2, No. 7, pp. 745-758 (2009).
Ji, Y., and Luo, Y., “Theoretical Study on the Mechanism of Photoreduction of CO2 to CH4 on the Anatase TiO2(101) Surface,” ACS Catal., Vol. 6, pp. 2018-2025 (2016)
Jiang, Z., Xiao, T., Kuznetsov, V. L. and Edwards, P. P., “Turning Carbon Dioxide into Fuel.” Philos. Trans. R. Soc. London, Ser. A., Vol. 368, No, 1923, pp. 3343-3364 (2010).
Junyi Wang, J., Ji, G., Liu, L., Gondal, M. A., and Chang, X., “Cu2O/TiO2 Heterostructure Nanotube Arrays Prepared by an Electrodeposition Method Exhibiting Enhanced Photocatalytic Activity for CO2 Reduction to Methanol,” Catal. Commun., Vol. 46, pp. 17-21 (2014).
Kaneco, S., Shimizu, Y., Ohta, K. and Mizuno, T., “Photocatalytic Reduction of High Pressure Carbon Dioxide using TiO2 Powders with a Positive Hole Scavenger,” J. Photochem. Photobiol., A., Vol. 115, No. 3, pp. 223-226 (1998).
Kao, C. F. and Yang, C. L., “Preparation and Electrical Properties of Barium Titanate Film by Hydrothermal Method,” J. Eur. Ceram. Soc., Vol. 19, pp. 1365-1368 (1999).
Karamian, E. and Sharifnia, S., “On the General Mechanism of Photocatalytic Reduction of CO2,” J. CO2 Util., Vol. 16, pp. 194-203 (2016).
Khan, M. M., Ansari, S. A., Pradhan, D., Ansari, M. O., Han, D. H., Lee, J. and Cho, M. H., “Band Gap Engineered TiO2 Nanoparticles for Visible Light Induced Photoelectrochemical and Photocatalytic Studies,” J. Mater. Chem. A., Vol. 2, No. 3, pp. 637-644 (2014).
Kim, D. W., Lee, S., Suk Jung, H., Young Kim, J., Shin, H. and Hong, K. S., “Effects of Heterojunction on Photoelectrocatalytic Properties of ZnO-TiO2 Films,” Int. J. Hydrogen Energy., Vol. 32, No. 15, pp. 3137-3140 (2007).
Kočí, K., Matějka, V., Kovář, P., Lacný, Z. and Obalová, L., “Comparison of the Pure TiO2 and Kaolinite/TiO2 Composite as Catalyst for CO2 Photocatalytic Reduction.” Catal. Today., Vol. 161, No. 1, pp. 105-109 (2011).
Kočí, K., Obalová, L., Šolcová, O., “Kinetic study of Photocatalytic Reduction of CO2 over TiO2,” Chem. Eng. Process., Vol. 31, pp. 375-407 (2010).
Lee, W. H., “The Photocatalytic Reduction of Carbon Dioxide in Aqueous and Gaseous Phases by UV/TiO2,” Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei (1999).
Lee, Y. Y., Jung, H. S. and Kang, Y. T., “A Review: Effect of Nanostructures on Photocatalytic CO2 Conversion over Metal Oxides and Compound Semiconductors.” J. CO2 Util., Vol. 20, pp. 163-177 (2017).
Li, K., An, X., Park, K. H., Khraisheh, M. and Tang, J., “A Critical Review of CO2 Photoconversion: Catalysts and Reactors,” Catal. Today., Vol. 224, pp. 3-12 (2014).
Li, L., Cheng, B., Wang, Y. and Yu, J., “Enhanced Photocatalytic H2-Production Activity of Bicomponent NiO/TiO2 Composite Nanofibers,” J. Colloid Interface Sci., vol. 449, pp. 115-121 (2015).
Lin, C. N., “Synthesis of p-n Junction Photocatalyst NiO/TiO2 by Sol-gel Method for Enhancement of Photocatalytic Activity,” Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei (2008).
Lin, J., Shen, J., Wang, R., Cui, J., Zhou, W., Hu, P., Liu, D., Wang, J., Boughton, R. I., and Yue, Y., “Nano-p–n Junctions on Surface-coarsened TiO2 Nanobelts with Enhanced Photocatalytic Activity,” J. Mater. Chem., Vol. 21, pp. 5106-5133 (2011).
Lin, P. C., “Deposition of Copper Indium Sulfide on TiO2 Nanotube Arrays for the Photocatalytic Degration of IPA in Air Streems,” Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei (2012).
Liu, B. J., Torimoto, T. and Yoneyama, H., “Photocatalytic Reduction of CO2 using Surface-Modified Cds Photocatalysts in Organic Solvents,” J. Photochem. Photobiol., A., Vol. 113, No. 1, pp. 93-97 (1998).
Liu, G., Hoivik, N., Wang, K. and Jakobsen, H., “Engineering TiO2 Nanomaterials for CO2 Conversion/Solar Fuels.” Sol. Energy Mater. Sol. Cells., Vol. 105, pp. 53-68 (2012).
Liu, L., and Li, Y., “Understanding the Reaction Mechanism of Photocatalytic Reduction of CO2 with H2O on TiO2-based Photocatalysts: a Review,” Aerosol Air Qual. Res., Vol. 14, pp. 453-469 (2014).
Liu, L., Gao, F., Zhao, H. and Li, Y. "Tailoring Cu Valence and Oxygen Vacancy in Cu/TiO2 Catalysts for Enhanced CO2 Photoreduction Efficiency." Appl. Catal., B., Vol.134-135, pp. 349-358 (2013).
Liu, L., Zhao, C., Pitts, D., Zhao, H. and Li, Y. "CO2 Photoreduction with H2O Vapor by Porous MgO-TiO2 Microspheres: Effects of Surface MgO Dispersion and CO2 Adsorption-desorption Dynamics." Catal. Sci. Technol., Vol. 4, No. 6, pp. 1539-1546 (2014).
Liu, L., Zhao, C., Zhao, H., Pitts, D. and Li, Y. "Porous Microspheres of MgO-patched TiO2 Photoreduction with H2O Vapor: Temperature-dependent Activity and Stability." Chem. Commun., Vol. 49, No. 35, pp. 3664-3666 (2013).
Lo, C. C., Hung, C. H., Yuan, C. S. and Wu, J. F., “Photoreduction of Carbon Dioxide with H2 and H2O over TiO2 and ZrO2 in a Circulated Photocatalytic Reactor,” Sol. Energy Mater. Sol. Cells., Vol. 91, No. 19, pp. 1765-1774 (2007).
Lou, Y. and Ollis, D. F., “Heterogeneous Photocatalytic Oxidation of Trichloroethylene and Toluene Mixtures in Air: Kinetic Promotion and Inhibition, Time-Dependent Catalyst Activity.” J. Catal. Vol. 163, pp. 1-11 (1996).
Mahmodi, G., Sharifnia, S., Madani, M. and Vatanpour, V., “Photoreduction of Carbon Dioxide in the Presence of H2, H2o and CH4 over TiO2 and ZnO Photocatalysts.” Sol. Energy, Vol. 97, pp. 186-194 (2013).
Malato, S., Blanco, J., Vidal, A. and Richter, C., “Photocatalysis with Solar Energy at a Pilot-Plant Scale: An Overview.” Appl. Catal., B., Vol. 37, No. 1, pp. 1-15. (2002).
Malekshahi, M. B., Nemati, K. A., Fatholahi, L. and Malekshahi, B. Z., “A Review on Synthesis of Nano-TiO2 via Different Methods,” J. Nanostruct., Vol. 3, pp. 1-9 (2013).
Medina-Valtierra, J., Moctezuma, E., Sánchez-Cárdenas, M. and Frausto-Reyes, C. “Global Photonic Efficiency for Phenol Degradation and Mineralization in Heterogeneous Photocatalysis,” J. Photochem. Photobiol., A., Vol. 174, No. 3, pp. 246-252 (2005).
Mehrotra, K., Yablonsky, G. S. and Ray, A. K. “Kinetic Studies of Photocatalytic Degradation in a TiO2 Slurry System: Distinguishing Working Regimes and Determining Rate Dependences.” Ind. Eng. Chem. Res., Vol. 42, No. 11, pp. 2273-2281 (2003).
Méndez-Román, R. and Cardona-Martínez, N., “Relationship between the Formation of Surface Species and Catalyst Deactivation during the Gas-Phase Photocatalytic Oxidation of Toluene.” Catal. Today., Vol. 40, No. 4 pp. 353-365 (1998).
Merajin, M. T., Sharifnia, S., Hosseini, S. N. and Yazdanpour, N., “Photocatalytic Conversion of Greenhouse Gases (CO2 and CH4) to High Value Products using TiO2 Nanoparticles Supported on Stainless Steel Webnet,” J. Taiwan Inst. Chem. Eng., Vol. 44, No. 2, pp. 239-246 (2013).
Mo, J., Zhang, Y. and Xu, Q., “Effect of Water Vapor on the by-Products and Decomposition Rate of Pb-Level Toluene by Photocatalytic Oxidation.” Appl. Catal., B., Vol. 132-133, pp. 212-218 (2013).
Nguyen, V. H. and Wu, J. C. S. “Recent Developments in the Design of Photoreactors for Solar Energy Conversion from Water Splitting and CO2 Reduction,” Appl. Catal., A., Vol. 550, pp. 122-141 (2018).
Ola, O. and Maroto-Valer, M. M., “Transition Metal Oxide Based TiO2 Nanoparticles for Visible Light Induced CO2 Photoreduction,” Appl. Catal., A., Vol. 502, pp. 114-121 (2015).
Parayil, S. K.; Razzaq, A.; Park, S. M.; Kim, H. R.; Grimes, C. A. and In, S. I., “Photocatalytic Conversion of CO2 to Hydrocarbon Fuel using Carbon and Nitrogen Co-Doped Sodium Titanate Nanotubes,”. Appl. Catal., A., Vol. 498, pp. 205-213 (2015).
Park, D. R., Zhang, J., Ikeue, K., Yamashita, H. and Anpo, M., “Photocatalytic Oxidation of Ethylene to CO2 and H2O on Ultrafine Powdered TiO2 Photocatalysts in the Presence of O2 and H2O.” J. Catal., Vol. 185, No. 1, pp. 114-119 (1999).
Peral, J. and Ollis, D. F., “Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification: Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, and M-Xylene Oxidation.” J. Catal., Vol. 136, No. 2, pp. 554-565 (1992).
Qu, Y. and Duan, X., “One-dimensional Homogeneous and Heterogeneous Nanowires for Solar Energy Conversion.” J. Mater. Chem., Vol. 32, pp. 16171-16181 (2012).
Ray, A. K. and Beenackers A. A., “Development of a New Photocatalytic Reactor for Water Purification,” Catal. Today., Vol. 40, No. 1, pp. 73-83 (1998).
Sadeghi, N., Sharifnia, S. and Sheikh Arabi, M., “A Porphyrin-Based Metal Organic Framework for High Rate Photoreduction of CO2 to CH4 in Gas Phase.” J. CO2 Util., Vol. 16, pp. 450-457 (2016).
Sadeghia, N., Sharifniaa, S., and Arabib, M. S., “A porphyrin-based Metal Organic Framework for High Rate Photoreduction of CO2 to CH4 in Gas Phase,” J. CO2 Util., Vol. 16, pp. 450-457 (2016).
Sarkar, D., Ghosh, C. K., Mukherjee, S., and Chattopadhyay, K. K., “ Three Dimensional Ag2O/TiO2 Type-II (p–n) Nanoheterojunctions for Superior Photocatalytic Activity,” ACS Appl. Mater. Interfaces, Vol. 5, pp. 331-337 (2013).
Sastre, F., Corma, A. and García, H. "185 nm Photoreduction of CO2 to Methane by Water. Influence of the Presence of a Basic Catalyst." J. Am. Chem. Soc., Vol. 134, No. 34,pp. 14137-14141 (2012).
Sauer, M. L., Hale, M. A. and Ollis, D. F., “Heterogenous Photocatalytic Oxidation of Dilute Toluene-Chlorocarbon Mixtures in Air.” J. Photochem. Photobiol., A., Vol. 88, No. 2-3 pp. 169-178 (1995).
Shandilya, M., Rai, R. and Singh, J., “Review: Hydrothermal Technology for Smart Materials,” Adv. Appl. Ceram., Vol. 115, No. 6, pp. 354-376 (2016).
Shang, J., Li, W. and Zhu, Y. “Structure and Photocatalytic Characteristics of TiO2 Film Photocatalyst Coated on Stainless Steel Webnet.” J. Mol. Catal. A: Chem., Vol. 202, No. 1-2, pp. 187-195 (2003).
Shang, J., Li, W. and Zhu, Y. “Structure and Photocatalytic Characteristics of TiO2 Film Photocatalyst Coated on Stainless Steel Webnet.” J. Mol. Catal. A: Chem., Vol. 202, No. 1-2, pp. 187-195 (2003).
Sharma, A. and Lee, B. K., “Photocatalytic Reduction of Carbon Dioxide to Methanol using Nickel-loaded TiO2 Supported on Activated Carbon Fiber,”. Catal. Today., Vol. 298, pp. 158-167 (2017).
Shifu, C., Wei, Z., Wei, L. and Sujuan, Z, “ Preparation, Characterization and Activity Evaluation of p–n junction Photocatalyst p-ZnO/n-TiO2 ,” Appl. Surf. Sci., Vol. 255, pp. 2478-2484 (2008).
Shirai, K., Sugimoto, T., Watanabe, K., Haruta, M., Kurata, H. and Matsumoto, Y., “Effect of Water Adsorption on Carrier Trapping Dynamics at the Surface of Anatase TiO2 Nanoparticles.” Nano Lett., Vol. 16, No. 2, pp. 1323-1327 (2016).
Sing Tan, S., Zou, L., and Hu, E., “Photosynthesis of Hydrogen and Methane as Key Components for Clean Energy System,” Sci. Technol. Adv. Mater., Vol. 8, No. 1-2, pp. 89-92 (2007).
Slamet, Nasution, H. W., Purnama, E., Kosela, S. and Gunlazuardi, J., “Photocatalytic Reduction of CO2 on Copper-doped Titania Catalysts Prepared by Improved-impregnation Method,” Catal. Commun., Vol. 6, No. 5, pp. 313-319 (2005).
Sreethawong, T., and Suzuki, Y., “ Photocatalytic Evolution of Hydrogen over Mesoporous TiO2 Supported NiO Photocatalyst Prepared by Single-step Sol–gel Process with Surfactant Template,” Int. J. Hydrogen Energy, Vol. 30, pp. 1053-1062 (2005).
Steven L. S., “New and Future Developments in Catalysis: Solar Photocatalysis, ” Elsevier Science Ltd, Boston (2013).
Subrahmanyam, M.; Kaneco, S. and Alonso-Vante, N., “A Screening for the Photo Reduction of Carbon Dioxide Supported on Metal Oxide Catalysts for C1-C3 Selectivity,” Appl. Catal., B., Vol. 23, No. 2-3, pp. 169-174 (1999).
Suib, S. L., “New and Future Developments in Catalysis: Solar Photocatalysis,” Elsevier Science Ltd, Boston (2013).
Sun, B., Zhou, G., Gao, T., Zhanga, H., and Yua, H., “NiO Nanosheet/TiO2 Nanorod-constructed p–n Heterostructures for Improved Photocatalytic Activity,” Appl. Surf. Sci., Vol. 364, pp. 332-331 (2016).
Sunada, K., Watanabe, T. and Hashimoto, K., “Studies on Photokilling of Bacteria on TiO2 Thin Film.” J. Photochem. Photobiol., A., Vol.156, No. 1-3, pp. 227-233 (2003).
Tan, L. L., Ong, W. J., Chai, S. P. and Mohamed, A. R., “Photocatalytic Reduction of CO2 with H2O over Graphene Oxide-Supported Oxygen-Rich TiO2 Hybrid Photocatalyst under Visible Light Irradiation: Process and Kinetic Studies,” Chem. Eng. J., Vol. 308, pp. 248-255 (2017).
Tan, S. S., Zou, L., and Hu, E., “Kinetic Modelling for Photosynthesis of Hydrogen and Methane through Catalytic Reduction of Carbon Dioxide with Water Vapour,” Catal. Today., vol. 131, no. 1-4, pp. 125-129 (2008).
Thiruvenkatachari, R., Vigneswaran, S., and Moon, I. S., “A Review on UV/TiO2 Photocatalytic Oxidation Process.” Korean J. Chem. Eng., Vol. 25, No. 1, pp. 64-72 (2008).
Uddin, M. T., Nicolas, Y., Olivier, C., Jaegermann, W., Rockstroh, N., Junge, H., and Toupance, T., “Band Alignment Investigations of Heterostructure NiO/TiO2 Nanomaterials used as Efficient Heterojunction Earth-Abundant Metal Oxide Photocatalysts for Hydrogen Production,” Phys. Chem. Chem. Phys., Vol, 19, No. 29, pp. 19279-19288 (2017).
Uddin, M. T., Nicolas, Y., Olivier, C., Jaegermann, W., Rockstroh, N., Junge, H. and Toupance, T., “Band Alignment Investigations of Heterostructure NiO/TiO2 Nanomaterials used as Efficient Heterojunction Earth-abundant Metal Oxide Photocatalysts for Hydrogen Production.” Phys. Chem. Chem. Phys., Vol. 19, No. 29, pp. 19279-19288 (2017).
Vinoth, R., Karthik, P., Devan, K., Neppolian, B., and Ashokkumar, M., “TiO2–NiO p–n Nanocomposite with Enhanced Sonophotocatalytic Activity under Diffused sunlight,” Ultrason. Sonochem., Vol. 35, pp. 655-663 (2017).
Vione, D., Minero, C., Maurino, V., Carlotti, M. E., Picatonotto, T. and Pelizzetti, E. “Degradation of Phenol and Benzoic Acid in the Presence of a TiO2-based Heterogeneous Photocatalyst,” Appl. Catal., B., Vol. 58, No. 1-2, pp. 79-88 (2005).
Wang, J., Ji, G., Liu, Y., Gondal, M. A. and Chang, X., “Cu2O/TiO2 Heterostructure Nanotube Arrays Pepared by an Lectrodeposition Method Exhibiting Enhanced Photocatalytic Activity for CO2 Reduction to Methanol,” Catal. Commun., Vol. 46, pp. 17-21 (2014).
Wang, W. N., Soulis, J., Jeffrey Yang, Y. and Biswas, P., “Comparison of CO2 Photoreduction Systems: A Review.” Aerosol Air Qual. Res., Vol. 14, No. 2, pp. 533-549 (2014).
Windle, C. D. and Perutz, R. N., “Advances in Molecular Photocatalytic and Electrocatalytic CO2 Reduction.” Coord. Chem. Rev., Vol. 256, No. 21-22, pp. 2562-2570 (2012).
Wu, J. C. S. and Lin, H. M., “Photoreduction of CO2 to Methanol via TiO2 Photocatalyst.” Int. J. Photoenergy, Vol. 7, No. 3 pp. 115-119 (2005).
Wu, J. C. S., Lin, H. M. and Lai, C. L., “Photo Reduction of CO2 to Methanol using Optical-Fiber Photoreactor,” Appl. Catal., A., Vol. 296, No. 2, pp. 194-200 (2005).
Xie, S., Wang, Y., Zhang, Q., Fan, W., Deng, W. and Wang, Y. "Photocatalytic Reduction of CO2 with H2O: Significant Enhancement of the Activity of Pt-TiO2 in CH2 Formation by Addition of MgO." Chem. Commun., Vol. 49, No. 24,pp. 2451-2453 (2013).
Xie, Y. L., Li, Z. X., Xu, Z. G., and Zhang, H. L., “Preparation of Coaxial TiO2/ZnO Nanotube Arrays for High-efficiency Photo-energy Conversion Applications,” Electrochem. Commun., Vol. 13, pp. 788-791 (2011).
Xin, B., Ren, Z., Wang, P., Liu, J., Jing, L. and Fu, H., “Study on the Mechanisms of Photoinduced Carriers Separation and Recombination for Fe3+-TiO2 Photocatalysts,” Appl. Surf. Sci., Vol. 253, No. 9, pp. 4390-4395 (2007).
Xiong, D., Chang, H., Zhanga, Q., Tiana, S., Liua, X., and Zhaoa, X., “Preparation and Characterization of CuCrO2/TiO2 Heterostructure Photocatalyst with Enhanced Photocatalytic activity,” Appl. Surf. Sci., Vol. 347, pp. 747-754 (2015).
Xu, H., Gao, H. and Guo, J., “Preparation and Characterizations of Tetragonal Barium Titanate Powders by Hydrothermal Method,” J. Eur. Ceram. Soc., Vol. 22, pp. 1163-1170 (2002).
Xu, H., Ouyang, S., Liu, L., Wang, D., Kako, T. and Ye, J., “Porous-Structured Cu2O/TiO2 Nanojunction Material toward Efficient CO2 Photoreduction,” Nanotechnology, Vol. 25, No. 16 (2014).
Xu, Z. and Yu, J., “Visible-Light-Induced Photoelectrochemical Behaviors of Fe-Modified TiO2 Nanotube Arrays,” Nanoscale., Vol. 3, No. 8, pp. 3138-3144 (2011).
Yamashita, H.; Nishiguchi, H.; Kamada, N.; Anpo, M.; Teraoka, Y.; Hatano, H., and Fox, M. A., “Photocatalytic Reduction of CO2 with H2O on TiO2 and Cu/TiO2 Catalysts,” Res. Chem. Intermed., Vol. 20, No. 8, pp. 815-823 (1994).
Yan, S. C., Ouyang, S. X., Gao, J., Yang, M., Feng, J. Y., Fan, X. X., Wan, L. J., Li, Z. S., Ye, J. H., Zhou, Y. and Zou, Z. G., “A Room-Temperature Reactive-Template Route to Mesoporous ZnGa2O4 with Improved Photocatalytic Activity in Reduction of CO2,” Angew. Chem. Int. Ed., Vol. 49, No. 36, pp. 6400-6404 (2010).
Yang, M. Q., and Xu, Y. J., “Photocatalytic Conversion of CO2 over Graphene-based Composites: Current Status and Future Perspective,” Nanoscale Horiz., Vol. 3, pp. 163-236 (2016).
Yazdanpour, N. and Sharifnia, S., “Photocatalytic Conversion of Greenhouse Gases (CO2 and CH4) using Copper Phthalocyanine Modified TiO2,” Sol. Energy Mater. Sol. Cells., Vol. 118, pp. 1-8 (2013).
Zhu, Y., Zhang, L., Wang, L., Fu, Y. and Cao, L., “The Preparation and Chemical Structure of TiO2 Film Photocatalysts Supported on Stainless Steel Substrates Via the Sol-Gel Method.” J. Mater. Chem., Vol. 11, No. 7, pp. 1864-1868 (2001).

QR CODE