簡易檢索 / 詳目顯示

研究生: Walelign Wubet Melkamu
Walelign - Wubet Melkamu
論文名稱: Investigation of Copper-Based Ternary and Quaternary Materials for Photovoltaic Applications
Investigation of Copper-Based Ternary and Quaternary Materials for Photovoltaic Applications
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 宋振銘
Jenn-Ming Song
薛人愷
Ren-Kae Shiue
朱瑾
Jinn-P Chu
黃柏仁
Bohr-Ran Huang
何清華
Ching-Hwa Ho
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 184
外文關鍵詞: extrinsic defect
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract
    Because of the increasing demand for clean energy, there has been growing interest in fabrication of photovoltaic devices which can harvest and directly convert solar energy into electricity. The most efficient thin film solar cells are based on Cu(In,Ga)(S,Se)2 (CIGSSe) and CdTe compounds, known as second generation polycrystalline thin films. The challenge of these materials is to reduce the cost per watt of solar energy conversion, but they are actually formed by expensive and scarce elements in the earth’s crust such as In, Ga, Te and others that present toxicity issues like Cd. The wide spread applications of solar cells will require dramatic decrease in cost through the use of non-toxic, inexpensive, and earth-abundant materials. Semiconductor compounds with kesterite structure (Cu2ZnSn(SxSe1-x)4, Cu2ZnSnS4, Cu2ZnSnSe4) and others like Cu2SnS3 (CTS), Cu2SnSe3 (CTSe) and their alloys Cu2Sn(S,Se)3 (CTSSe), copper-based sulfides CuSbS2 (mineral name Chalcostibite) and CuBiS2 (Emplectite), all of them Cadmium-free have been proposed as new candidates for thin film solar cells due to their similarity in material properties with CIGS and the relative abundance of raw materials. However, reported solar cell efficiencies for these compounds have not yet reached the expected values. In this work, we have investigated the microstructure, structural and electrical properties of the earth abundant copper-based materials such as Cu2ZnSnSe4, Cu2SnSe3 and CuSbS2 so as to identify the different mechanisms that limit cell performance.
    This investigation has four parts. The first part deals about the effect of magnesium doping in Cu2ZnSnSe4. For the study of Mg-doped CZTSe bulk material, (Cu2-xMgx)ZnSnSe4 formula at x = 0, 0.1, 0.2, 0.3, and 0.4 were designed. The soluble sintering aids of Sb2S3 and Te were used for densification. Defect chemistry was studied by measuring structural and electrical properties of Mg-doped CZTSe as a function of dopant concentration. From the measured values, except at x = 0, all Mg-doped CZTSe pellets showed a n-type behavior. n-type Mg-CZTSe pellets at x = 0.1 showed the highest electrical conductivity of 24.6 S cm-1 and hole mobility of 120 cm2 V-1 s-1, as compared to 11.8 S cm-1 and 36.5 cm2 V-1 s-1 for the undoped p-type CZTSe. Mg dopant was a strong promoter of electrical mobility. Mg dopant behaves as a donor defect in CZTSe at 5% doping content, but is also used as an acceptor at a high content above 5%. From these results it was predicted that Mg doping will further developed CZTSe into a promising semiconductor.
    The second part deals about the improvements in electrical properties for the Sn-rich Cu2ZnSnSe4 bulks. Effects of the Cu variation in Cu2-xZn0.9Sn1.1Se4 (Sn-rich CZTSe) bulks with x = 0–0.3 on the morphological, structural, and electrical properties have been investigated. Cu2-x(Zn0.9Sn1.1)Se4 pellets show as the p type at x = 0 and 0.1 and the n type at x = 0.2 and 0.3. Sn-rich CZTSe at x = 0 and 0.1 has high mobilities of 87.1 and 58.4 cm2/Vs and favorable hole concentrations of 7.52×1017 and 4.88×1017 cm-3, respectively. SEM surface images have shown that the grains are less densely packed as the copper content decreases. The non-stoichiometric compositions of Sn-rich CZTSe under various Cu contents led to the intrinsic defects, with which the changes in the structural and electrical properties of the bulks with the Cu ratio can be explained. This work provides the promising results for Sn-rich CZTSe with the Sn excess to control the hole concentration and the Cu content to keep high electrical mobility.
    The third part deals about the effect of Mg doping in Cu2SnSe3. Mg-doped Cu2SnSe3 bulk materials with the (Cu2-xMgx)SnSe3 (Mg-x-CTSe) formula at x = 0, 0.05, 0.1, 0.15, and 0.2 were prepared at 550 ˚C for 2 h with soluble sintering aids of Sb2S3 and Te. Defect chemistry was studied by measuring structural and electrical properties of Mg-doped Cu2SnSe3 as a function of dopant concentration. Mg-x-CTSe pellets show p-type at x = 0, 0.05 and 0.1 and n-type at x = 0.15 and 0.2. The low hole concentration of 3.2×1017 cm-3 and high mobility of 387 cm2 V-1 s-1 were obtained for (Cu2-xMgx)SnSe3 bulks at x = 0.1 (5% Mg) as compared to 2.2×1018 cm-3 and 91 cm2 V-1 s-1 for the undoped one. The explanation based upon the Mg-to-Cu antisite donor defect for the changes in electrical property was declared. A high Mg content for Mg-x-CTSe at x  0.1 can lead to the formation of second phases. The study in bulk Mg-x-CTSe has been based upon defect states and is consistent and supported by the data of structural and electrical properties.
    The fourth part deals about process limitation for p-type CuSbS2 semiconductor. CuSbS2 bulks were prepared by reactive sintering the mixture of CuS and Sb2S3 at 350, 375, 400, 450, and 500 oC for 2 h and at the sintering temperature of 400 oC for 0.5, 1, 2, and 3 h under a compensation disc of CuS for atmospheric control. Composition, structure, morphology, and electrical properties of the sintered bulks were analyzed. The compositions of Cu, Sb and S did not change until the temperature reached at and above 450 oC. The highest electrical conductivity of 15 S cm-1 and the highest mobility of 20 cm2 V-1 s-1 were obtained for CuSbS2 sintered at 400 oC for 2 h. 5% deviations in the Cu/Sb and S/(Cu+Sb) rations caused a serious problem in the degradation of electrical properties, though the CuSbS2 remained as a single phase. From these results, it has been concluded that CuSbS2 is the semiconductor which needs to have a controlled composition.


    Abstract
    Because of the increasing demand for clean energy, there has been growing interest in fabrication of photovoltaic devices which can harvest and directly convert solar energy into electricity. The most efficient thin film solar cells are based on Cu(In,Ga)(S,Se)2 (CIGSSe) and CdTe compounds, known as second generation polycrystalline thin films. The challenge of these materials is to reduce the cost per watt of solar energy conversion, but they are actually formed by expensive and scarce elements in the earth’s crust such as In, Ga, Te and others that present toxicity issues like Cd. The wide spread applications of solar cells will require dramatic decrease in cost through the use of non-toxic, inexpensive, and earth-abundant materials. Semiconductor compounds with kesterite structure (Cu2ZnSn(SxSe1-x)4, Cu2ZnSnS4, Cu2ZnSnSe4) and others like Cu2SnS3 (CTS), Cu2SnSe3 (CTSe) and their alloys Cu2Sn(S,Se)3 (CTSSe), copper-based sulfides CuSbS2 (mineral name Chalcostibite) and CuBiS2 (Emplectite), all of them Cadmium-free have been proposed as new candidates for thin film solar cells due to their similarity in material properties with CIGS and the relative abundance of raw materials. However, reported solar cell efficiencies for these compounds have not yet reached the expected values. In this work, we have investigated the microstructure, structural and electrical properties of the earth abundant copper-based materials such as Cu2ZnSnSe4, Cu2SnSe3 and CuSbS2 so as to identify the different mechanisms that limit cell performance.
    This investigation has four parts. The first part deals about the effect of magnesium doping in Cu2ZnSnSe4. For the study of Mg-doped CZTSe bulk material, (Cu2-xMgx)ZnSnSe4 formula at x = 0, 0.1, 0.2, 0.3, and 0.4 were designed. The soluble sintering aids of Sb2S3 and Te were used for densification. Defect chemistry was studied by measuring structural and electrical properties of Mg-doped CZTSe as a function of dopant concentration. From the measured values, except at x = 0, all Mg-doped CZTSe pellets showed a n-type behavior. n-type Mg-CZTSe pellets at x = 0.1 showed the highest electrical conductivity of 24.6 S cm-1 and hole mobility of 120 cm2 V-1 s-1, as compared to 11.8 S cm-1 and 36.5 cm2 V-1 s-1 for the undoped p-type CZTSe. Mg dopant was a strong promoter of electrical mobility. Mg dopant behaves as a donor defect in CZTSe at 5% doping content, but is also used as an acceptor at a high content above 5%. From these results it was predicted that Mg doping will further developed CZTSe into a promising semiconductor.
    The second part deals about the improvements in electrical properties for the Sn-rich Cu2ZnSnSe4 bulks. Effects of the Cu variation in Cu2-xZn0.9Sn1.1Se4 (Sn-rich CZTSe) bulks with x = 0–0.3 on the morphological, structural, and electrical properties have been investigated. Cu2-x(Zn0.9Sn1.1)Se4 pellets show as the p type at x = 0 and 0.1 and the n type at x = 0.2 and 0.3. Sn-rich CZTSe at x = 0 and 0.1 has high mobilities of 87.1 and 58.4 cm2/Vs and favorable hole concentrations of 7.52×1017 and 4.88×1017 cm-3, respectively. SEM surface images have shown that the grains are less densely packed as the copper content decreases. The non-stoichiometric compositions of Sn-rich CZTSe under various Cu contents led to the intrinsic defects, with which the changes in the structural and electrical properties of the bulks with the Cu ratio can be explained. This work provides the promising results for Sn-rich CZTSe with the Sn excess to control the hole concentration and the Cu content to keep high electrical mobility.
    The third part deals about the effect of Mg doping in Cu2SnSe3. Mg-doped Cu2SnSe3 bulk materials with the (Cu2-xMgx)SnSe3 (Mg-x-CTSe) formula at x = 0, 0.05, 0.1, 0.15, and 0.2 were prepared at 550 ˚C for 2 h with soluble sintering aids of Sb2S3 and Te. Defect chemistry was studied by measuring structural and electrical properties of Mg-doped Cu2SnSe3 as a function of dopant concentration. Mg-x-CTSe pellets show p-type at x = 0, 0.05 and 0.1 and n-type at x = 0.15 and 0.2. The low hole concentration of 3.2×1017 cm-3 and high mobility of 387 cm2 V-1 s-1 were obtained for (Cu2-xMgx)SnSe3 bulks at x = 0.1 (5% Mg) as compared to 2.2×1018 cm-3 and 91 cm2 V-1 s-1 for the undoped one. The explanation based upon the Mg-to-Cu antisite donor defect for the changes in electrical property was declared. A high Mg content for Mg-x-CTSe at x  0.1 can lead to the formation of second phases. The study in bulk Mg-x-CTSe has been based upon defect states and is consistent and supported by the data of structural and electrical properties.
    The fourth part deals about process limitation for p-type CuSbS2 semiconductor. CuSbS2 bulks were prepared by reactive sintering the mixture of CuS and Sb2S3 at 350, 375, 400, 450, and 500 oC for 2 h and at the sintering temperature of 400 oC for 0.5, 1, 2, and 3 h under a compensation disc of CuS for atmospheric control. Composition, structure, morphology, and electrical properties of the sintered bulks were analyzed. The compositions of Cu, Sb and S did not change until the temperature reached at and above 450 oC. The highest electrical conductivity of 15 S cm-1 and the highest mobility of 20 cm2 V-1 s-1 were obtained for CuSbS2 sintered at 400 oC for 2 h. 5% deviations in the Cu/Sb and S/(Cu+Sb) rations caused a serious problem in the degradation of electrical properties, though the CuSbS2 remained as a single phase. From these results, it has been concluded that CuSbS2 is the semiconductor which needs to have a controlled composition.

    Table of Contents Acknowledgements i Abstract ii Table of Contents v List of Figures viii List of Tables xiii 1 Introduction 1 1.1 Background of the study 1 1.2 Introduction to Photovoltaics 3 1.2.1 The photovoltaic effect 3 1.2.2 Solar Radiation 4 1.2.3 Photovoltaic Conversion 7 1.2.4 Photovoltaic cell I-V Characteristics 10 1.2.4.1 Open-circuit voltage (VOC) 10 1.2.4.2 The short-circuit current (ISC) 11 1.2.4.3 Fill Factor (FF) 12 1.2.4.4 Efficiency (η) 13 1.3 Photovoltaic Materials 14 1.3.1 Requirements for Photovoltaic Materials 15 1.3.2 Development of Photovoltaic Materials 15 1.3.2.1 Silicon (Si) 16 1.3.2.2 Copper indium diselenide and related compounds (CIGS) 17 1.3.2.3 Cadmium Telluride (CdTe) 21 1.3.2.4 Dye-sensitized Solar cells 22 1.3.2.5 Organic Solar cells 22 1.3.3 Earth-Abundant Copper-Based Photovoltaic Materials 23 1.3.3.1 Kesterite-Related PV Materials [CZTS(Se)] 24 1.3.3.2 Copper Tin Selenide/Sulfide [Cu2SnX3(X = S, Se)] 30 1.3.3.3 Copper Antimony Sulfide (CuSbS2) 33 1.4 Densification and Grain Growth of PV Materials 35 1.4.1 Sintering 35 1.4.2 Categories of Sintering 37 1.4.3 Driving Force and Basic Phenomena 39 1.4.4 Sintering variables 41 1.5 Defect Physics/Chemistry of Copper-Based PV Materials 43 1.6 Intrinsic and Extrinsic Doping 46 1.6.1 Dependence of Formation Energies on Chemical Potentials 48 1.6.2 Dependence of Defect Formation Enthalpy on the Fermi Level 48 1.6.3 The Emerging Phenomenology of Doping Limits 50 1.7 Motivation, Challenge and Purpose 51 1.7.1 Motivation 51 1.7.2 Challenge 52 1.7.3 Purpose 54 1.8 Preview of the Thesis 54 2 Literature Review 56 2.1 Cu2ZnSnSe4 (CZTSe) 56 2.2 Cu2SnSe3 (CTSe) 59 2.3 CuSbS2 61 3 Experimental Apparatus and Procedure 64 3.1 Powders Used for this Study 64 3.1.1 Preparation of Cu2Se Powder 64 3.1.2 Preparation of SnSe2 Powder 67 3.2 Sample preparation procedure for Reactive Sintering 68 3.2.1 Powdering and Mixing Using Conventional Ball Mill Machine 68 3.2.2 Powdering Using Planetary Ball Mill Machine 69 3.2.3 Pellet Formation Using Cold Press Machine 72 3.2.4 Reactive Sintering Using Tube Furnace Machine 73 3.2.5 Modification of Powders Before Sintering 74 3.3 Material Characterization Techniques 76 3.3.1 X-Ray Diffraction (XRD) 76 3.3.2 Raman Spectroscopy 79 3.3.3 Scanning Electron Microscopy (SEM) 79 3.3.4 Energy Dispersive X-ray Spectroscopy (EDS) 80 3.3.5 Hall Effect Measurement 81 4 Results and Discussion 87 4.1 Effect of Magnesium Doping on the Structural and Electrical Properties of Cu2ZnSnSe4 87 4.1.1 Experimental Approach 87 4.1.2 Results and Discussion 88 4.1.3 Summary 97 4.2 Improvements in Electrical Properties for the Sn-rich Cu2ZnSnSe4 Bulks 98 4.2.1 Experimental Approach 98 4.2.2 Results and Discussion 98 4.2.3 Summary 106 4.3 Effect of Magnesium Doping on the Structural and Electrical Properties of Cu2SnSe3 107 4.3.1 Experimental Approach 107 4.3.2 Results and Discussion 108 4.3.3 Summary 116 4.4 Process and Characterisitics of p-type CuSbS2 semiconductor Bulks 117 4.4.1 Experimental Approach 117 4.4.2 Results and Discussion 117 4.4.3 Summary 125 4.5 Effect of Copper Content on Cu2ZnSnSe4 and Cu2SnSe3 125 5 Conclusions and Recommendations 127 5.1 Conclusions 127 5.2 Recommendations 130 6 References 131 Appendix: 158 Publications: 166

    6 References
    [1] A.R Jha, Solar cell Technology and Applications, CRC press, Taylor and Francis Group, LLC, USA, 2010.
    [2] S. J. C. Irvine, Materials Challenges: Inorganic Photovoltaic Solar Energy, RSC Energy and Environment Series No. 12, c The Royal Society of Chemistry, UK 2015. Print ISBN: 978-1-84973-187-4.
    [3] C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvic, A. A. Rocket, V. M. Fthenakis, E. S. Aydil, Photovoltaic Manufacturing: Present Status, Future Prospects and Research Needs, Work Shop by United States National Science Foundation through grant CBET-0931145, May 2010.
    https://www.bnl.gov/pv/files/pdf/233_Wolden_JVST_paper.pdf
    [4] E. Martinot, “Renewables 2007 Global Status Report” (Paris: REN21 Secretariat and Washington, DC: World watch Institute). Copyright c 2008 Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ) GmbH. http://www.ren21.net/Portals/0/documents/activities/gsr/RE2007_Global_Statu s_Report.pdf
    [5] International Energy Agency (IEA), Technology Roadmap: Solar Photovoltaic Energy, c OECD/IEA, 2014 International Energy Agency 9 rue de la Federation 75739 Paris Cedex 15, France. www.iea.org.
    [6] World Business Council for Sustainable Development (WBCSD), Path ways to 2050 Energy and Climate Change, c WBCSD, Atar Roto Presse SA, Switzerland, November 2005. http://www.wbcsd.org/web/publications/pathways.pdf
    [7] V. M. Fthenakis, J. E. Mason, K. Zweibel, The Technical, Geographical and Economic Feasibility for Solar Energy to Supply the Energy Needs of the United States, Energy policy 37 (2009) 387-399.
    [8] Fraunhofer Institute for Solar Energy Systems ISE, Photovoltaics Report, Freiburg, 24 October 2014. http://www.ise.fraunhofer.de/de/downloads/pdffiles/aktuelles/photovoltaics report-in englischer-sprache.pdf
    [9] M. A. Green, "Estimates of Te and In Prices from Direct Mining of Known Ores" Prog. Photo volt.Res. Appl. 17 (2009) 347-359.
    [10] J-J Wang, P. Liu, C. C. Seaton, K. M. Ryan, "Complete Colloidal Synthesis of Cu2SnSe3 Nanocrystals with Crystal Phase and Shape Control", J. Am. Chem. Soc. 136 (2014) 7954−7960.
    [11] J. Koike, K. Chino, N. Aihara, H. Araki, R. Nakamura, K. Jimbo, H. Katagiri, "Preparation of Cu2SnS3 Thin Films by Sulfurization of Cu/Sn Stacked Precursors", Jpn. J. Appl. Phys. 51 (2012) 10NC35-1-3.
    [12] X.-a. Chen, H. Wada, A. Sato, H. Nozaki, "Synthesis, structure, and electronic properties of Cu2SiQ3 (Q = S, Se)", J. Alloy. Compd. 290 (1999) 91–96.
    [13] J.T.R. Dufton, A. Walsh, P.M. Panchmatia, L.M. Peter, D. Colombara, M.S. Islam, "Structural and electronic properties of CuSbS2 and CuBiS2: potential absorber materials for thin-film solar cells" Phys. Chem. Chem. Phys. 14 (2012) 7229 – 7233.
    [14] D. J. Temple, A. B. Kehoe, J. P. Allen, G. W. Watson, D. O. Scanlon, " Geometry, Electronic Structure, and Bonding in CuMCh2 (M = Sb, Bi; Ch = S, Se): Solar Cell Absorber Materials?" J. Phys. Chem. C, 116 (2012) 7334-7340.
    [15] C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvik, A. A. Rockett, V. M. Fthenakis, E. S. Aydil, "Photovoltaic manufacturing: Present status, future prospects, and research needs", J. Vac. Sci. Technol. A 29 (2011) 030801(1-16).
    [16] D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, "The path towards a high-performance solution-processed kesterite solar cell", Sol. Energy Mater. Sol. Cells 95 (2011) 1421-1436.
    [17] H. Katagiri, "Cu2ZnSnS4 thin film solar cells" Thin Solid Films 480-481 (2005) 426-432.
    [18] M. W. Gaultois, T. D. Sparks, C. K. H. Borg, R. Seshadri, W. D. Bonificio, D. R. Clarke, "A data-driven review of thermoelectric materials: Performance and resource considerations", Chem. Mater. 25 (2013) 2911−2920.
    [19] B. Jaffe, J. Price, "Critical Elements for New Energy Technologies", APS physics panel on public affairs, MIT Energy Workshop on Critical Elements for New Energy Technologies | April 29, 2010 1-175.
    [20] S. M. Shauddin, "Comparison among Various Emerging PV Cells with History, Current Status and Future Challenges" Energy and Power 3(6) (2013) 91-105. DOI: 10.5923/j.ep.20130306.01.
    [21] A. L. Fahrenbruch, R. H. Bube, FUNDAMENTALS OF SOLAR CELLS: Photovoltaic Solar Energy Conversion. New York, NY: Academic Press, Inc, 1983.
    [22] C. A. Gueymard, D. Myers, K. Emery, "Proposed reference irradiance spectra for solar energy systems testing" Sol. Energy 73 (2002) 443–467.
    [23] “Reference solar spectral irradiance: Air mass 1.5, http://rredc.nrel.gov/solar/spectra/am1.5/,”
    [24] R. Nave, HYPER PHYSICS: Condensed matter, Selected by the SciLinks program, a service of National Science Teachers Association. Department of Physics and Astronomy Georgia State University, Atlanta, Georgia 30302-4106, 2001.
    [25] A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering Second Edition, Institute of Energy Conversion, University of Delaware, USA, A John Wiley and Sons, Ltd, 2011.
    [26] A. Goetzberger, V.U. Hoffmann, Photovoltaic Solar Energy Generation, Springer Verlag, Berlin, Heidelberg, Germany, 2005.
    [27] R. A. Sinton, A. Cuevas, "Contactless determination of current–voltage characteristics and minority carrier lifetimes in semiconductors from quasi-steady- state photo conductance data", Appl. Phys. Lett. 69 (17) (1996) 2510-2512.
    [28] P. S. Priambodo, N. R. Poespawati, D. Hartanto, Solar Cell, Solar Cells-Silicon Wafer-Based Technologies, Prof. Leonid A. Kosyachenko (Ed.), 2011, ISBN: 978-953-307-747-5.
    [29] M. A. Green, "Solar cell fill factors: General graph and empirical expressions", Solid-State Electron. 24 (1981) 788-789.
    [30] K. W. Bӧer, Hand book of the physics of thin-film solar cells, Springer-Verlag Berlin Heidelberg, 2013, ISBN 978-3-642-36747-2, http://www.springer.com/978-3-642-36747-2.
    [31] S. Baig, Cyanoacrylate Superglue-MOTM, 2009. (Accessed 2014-11-24) http://www.chm.bris.ac.uk/motm/superglue/superglueh.htm.
    [32] A. Goetzberger, C. Hebling, "Photovoltaic materials, past, present, future" Sol. Energy Mater. Sol. Cells 62 (2000) 1-19.
    [33] W. Zulehner, "Status and future of silicon crystal growth", Mater. Sci. Eng. B
    4 (1989) 1–10.
    [34] S. R. Kodigala, Thin Films and Nanostructures: Cu(In1-xGax)Se2 Based Thin Film Solar Cells, Elsevier Inc., 2010, ISBN: 978-0-12-373697-0 ISSN: 1543-5016.
    [35] M. Boreland, D. Bagnall, Current and Future Photovoltaics, Commissioned Report for Office of Science and Innovation – Foresight and Horizon Scanning Centre–Energy Project.
    [36] S. Wagner, J.L. Shay, P.P. Migliorato, H.M. Kasper, "CuInSe2/CdS heterojunction photovoltaic detectors", Appl. Phys. Lett. 25 (1974) 434.
    [37] L.L. Kazmerski, F.R. White, G.K. Morgan, "Thin‐film CuInSe2/CdS heterojunction solar cells", Appl. Phys. Lett.29 (1976) 268.
    [38] K.C. Mitchell, E.J. Ermer, D. Pier, "Single and tandem junction CuInSe2 cell and module technology" in: Proceedings of the Conference Record on 20th IEEE Photovoltaic Specialists Conference, Las Vegas, IEEE Press, Piscataway, 1988, p. 1384-1389.
    [39] T. Haalboom, T. Godecke, F. Ernst, M. Ruhle, R. Herberholz, H.-W. Schock, C. Beilharz, K.W. Benz, Inst. Phys. Conf. Ser. 152E (1997) 249–252.
    [40] S.B. Zhang, S.H. Wei, A. Zunger, H. Katayama-Yoshida, "Defect physics of the CuInSe2 chalcopyrite semiconductor", Phys. Rev. B 57 (1998) 9642.
    [41] D. Schmid, M. Ruckh, F. Grunwald, H. W. Schock, Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2", J. Appl. Phys. 73 (1993) 2902.
    [42] B. Dimmler, H.W. Schock, "Scaling-up of CIS Technology for Thin-film Solar Modules", Prog. Photovolt.: Res. Appl. 4 (1996) 425–433.
    [43] P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, M. Powalla, "Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%", Phys. Status Solidi–Rapid Res. Lett. 8 (2014) 219–222.
    [44] R. Herberholza, V. Nadenau, U. Riihle, C. Koble, H.W. Schock, B. Dimmler, "Prospects of wide-gap chalcopyrites for thin film photovoltaic modules", Sol. Energy Mater. Sol. Cells 49 (1997) 227-237.
    [45] H.W. Schock, R. Noufi, "CIGS-based Solar Cells for the Next Millennium", Prog. Photovolt.: Res. Appl. 8 (2000) 151–160.
    [46] D.A. Cusano, "CdTe solar cells and photovoltaic heterojunctions in II-VI compounds", Solid State Electron. 6 (1963) 217.
    [47] J. P. Reithmaier, P. Paunovic, W. Kulisch, C. Popov, P. Petkov (2010). Nanotechnological Basis for Advanced Sensors Sozopol, Bulgaria, Springer Science & Business Media. ISBN 978-94-007-0903-4 (e-book).
    [48] B. Agrawal, G. N. Tiwari, Building Integrated Photovoltaic Thermal Systems For Sustainable Developments, The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK., 2011, ISBN: 978-1-84973-090-7.
    [49] M. A. Green, Photovoltaic Specialists Conference (PVSC) 35th IEEE, Honolulu, HI, (2010) 000550−000555.
    [50] K. Ramasamy, M. A. Malik, P. O’Brien, "Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells", Chem. Commun. 48 (2012) 5703-5714.
    [51] R. Nische, D. F. Sargent, P. J. Wild, Cryst. Growth 1(1967) 52-53.
    [52] N. G. Dhere, "Toward GW/year of CIGS production within the next decade" Sol. Energy Mater. Sol. Cells 91 (2007) 1376-1382.
    [53] N. G. Dhere, "Scale-up issues of CIGS thin film PV modules" Sol. Energy Mater. Sol. Cells 95 (2011) 277-280.
    [54] M. M. A. Green, "Consolidation of thin-film photovoltaic technology: the coming decade of opportunity", Prog. Photovoltaics 14 (2006) 383-392.
    [55] B. A. Anderson, C. Azar, J. Holmberg, S. Karlsson, "Material constraints for thin-film solar cells", Energy 23 (1998) 407-411.
    [56] National Renewable Energy Laboratory, "NREL Explores Earth-Abundant Materials for Future Solar Cells", NREL/FS-6A42-53601 ‧ October 2012. www.nrel.gov/docs/fy13osti/53601.pdf
    [57] H. Katagiri, "Cu2ZnSnS4 thin film solar cells" Thin Solid Films 480-481(2005) 426-432.
    [58] A. A. Fischereder, "Investigation of CuZnSnS Formation from Metal Salts and Thioacetamide", Chem. Mat. 22 (2010) 3399-33406.
    [59] H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, "Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E---B evaporated precursors", Sol. Energy Mater. Sol. Cells 49 (1997) 407-414.
    [60] J. Seol, S. Lee, J. Lee, H. Nam, K. Kim, "Electrical and optical properties of Cu2ZnSnS4 thin films prepared by RF magnetron sputtering process", Sol. Energy Mater. Sol. Cells 75(2006) 155-162.
    [61] T. Tanaka, D. Kawasaki, M. Nishio, Q. Guo, H. Ogawa, "Fabrication of Cu2ZnSnS4 thin films by co-evaporation", Phys. Status Solidi C 3 (2006) 2844-2847.
    [62] T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, H. Ogawa, "Preparation of Cu2ZnSnS4 thin films by hybrid sputtering", J. Phys. Chem. Solids 66 (2005) 1978-1981.
    [63] H. Araki, Y. Kubo, A. Mikaduki, K. Jimbo, W. S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, A. Takeuchi, "Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors", Sol. Energy Mater. Sol. Cells 93 (2009) 996-999.
    [64] K. Moriya, J. Watabe, K.Tanaka, H. Uchiki, "Characterization of Cu2ZnSnS4 thin films prepared by photo-chemical deposition", Phys. Status Solidi C, 3 (2006) 2848-2852.
    [65] K. Tanaka, M. Oonuki, N. Moritake, H. Uchiki, "Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing", Sol. Energy Mater. Sol. Cells 93 (2009) 583-587.
    [66] M. M. Y Yeh, "Influences of synthesizing temperatures on the properties of Cu2ZnSnS4 prepared by sol-gel spin-coated deposition", J. Sol-Gel Sci. Technol 52 (2009) 65-68.
    [67] N. Nakayama, K. Ito, "Sprayed films of stannite Cu2ZnSnS4", Appl. Surf. Sci. 92 (1996) 171-175.
    [68] S. C. Riha, B. A. Parkinson, A. L. Prieto, "Solution-Based Synthesis and Characterization of Cu2ZnSnS4 Nanocrystals", J. Am. Chem. Soc. 131 (2009) 12054-12055.
    [69] T. K. Todorov, K. B. Reuter, D. B. Mitzi, "High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber", Adv. Mater 22 (2010). E 156-E159.
    [70] W. Wang , M. T. Winkler , O. Gunawan , T. Gokmen , T. K. Todorov , Y. Zhu , D. B. Mitzi, "Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency", Adv. Energy Mater. 4 (2014) 1301465 (1-5).
    [71] S. -Y. Kuo, M. -Y. Hsieh, "Efficiency enhancement in Cu2ZnSnS4 solar cells with subwavelength grating nanostructures", Nanoscale 6 (2014) 7553–7559.
    [72] S. Siebentritt, S. Schorr, Kesterites-a challenging material for solar cells. Prog. Photovolt: Res. Appl. 20:512–519 c 2012 John Wiley & Sons, Ltd. 519, 2012, DOI: 10.1002/pip.
    [73] P.S. Vasekar, T. P. Dhakal, Solar cells-Research and Applications Perspectives, CC BY 3.0 license, 2013, ISBN 978-953-51-1003-3. DOI: 10.5772/51734.
    [74] I.D. Olekseyuk, I.V. Dudchak, L.V. Piskach, "Phase equilibria in the Cu2S–ZnS–SnS2 system", J. Alloy. Compd. 368 (2004) 135-143.
    [75] J. -S. Seol, S. -Y. Lee, J. -C. Lee, H. -D. Nam, K.-H. Kim, "Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process", Sol. Energy Mater. Sol. Cells . 75 (2003) 155-162.
    [76] H. Yoo, J. Kim, " Growth of Cu2ZnSnS4 thin films using sulfurization of stacked metallic films", Thin solid films 518 (2010) 6567-6572.
    [77] W. Schafer, R. Nitsche, "Tetrahedral quaternary chalcogenides of the type Cu2 -II- IV-S4 (Se4 )", Mat. Res. Bull. 9 (1974) 645-654.
    [78] L. M. Peter, "Review Towards sustainable photovoltaics: The search for new materials", Phil. Trans. R. Soc. A 369 (2011) 1840–1856 doi:10.1098/rsta.2010.0348
    [79] P. A. Fernandes, P. M. P. Salome, A. F. da Cunha, "A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors", J. Phys. D: Appl. Phys. 43 (2010) 215403 (1-11).
    [80] T. Maeda, S. Nakamura, T. Wada, "First-principles calculations of vacancy formation in In-free photovoltaic semiconductor Cu2ZnSnSe4", Thin Solid Films 519 (2011) 7513–7516.
    [81] T. Kuku, O. Fakolujo, "Photovoltaic characteristics of thin films of Cu2SnS3", Sol. Energy Mater. 16 (1987) 199-204.
    [82] L.K. Samanta, "On Some Properties of I2-IV-VI3 Compounds", Phys. Stat. Sol. A 100 (1987) K93–K97.
    [83] Y. -T. Zhai, S. Chen, J. -H. Yang, H. -J. Xiang, X. -G Gong, A. Walsh, J. Kang, S. -H. Wei, "Structural diversity and electronic properties of Cu2SnX3 (X = S, Se): A first-principles investigation", Phys. Rev. B 84 (2011) 075213(1-6).
    [84] M. Onoda, X.-an Chen, A. Sato, H. Wada, "Crystal structure and twinning of monoclinic Cu2SnS3", Mater. Res. Bull. 35 (2000) 1563–1570.
    [85] S. Fiechter, M. Martinez, G. Schmidt, W. Henrion, Y. Tomm, "Phase relations and optical properties of semiconducting ternary sulfides in the system Cu–Sn–S", J. Phys. Chem. Solids 64 (2003) 1859–1862.
    [86] D. Colombara, L. M. Peter, K. D. Rogers, J. D. Painter, S. Roncallo, "Formation of CuSbS2 and CuSbSe2 thin films via chalcogenization of Sb-Cu metal precursors", Thin Solid Films 519 (2011) 7438–7443.
    [87] Ionut Popovici and Anca Duta, International Journal of Photoenergy Volume 2012, Article ID 962649, 6 pages doi:10.1155/2012/962649
    [88] Y. Rodrı’guez-Lazcano, M.T.S. Nair, P.K. Nair, "CuSbS2 thin film formed through annealing chemically deposited Sb2S3–CuS thin films", J. Cryst. Growth 223 (2001) 399–406.
    [89] F. Al-Saab, B. Gholipour, C.C. Huang, D.W. Hewak, "Crystallization Study of the CuSbS2 Chalcogenide Material for Solar Applications", PV-SAT 9, Southampton, United Kingdom.
    [90] A. W. Welch, P. P. Zawadzki, S. Lany, C. A.Wolden, A. Zakutayev, "Self-regulated growth and tunable properties of CuSbS2 solar absorbers", Sol. Energy Mater. Sol. Cells 132 (2015) 499–506.
    [91] J. T. R. Dufton, A. Walsh, P. M. Panchmatia, L. M. Peter, D. Colombara, M. S. Islam, "Structural and electronic properties of CuSbS2 and CuBiS2: potential absorber materials for thin-film solar cells", Phys. Chem. Chem. Phys. 14 ( 2012) 7229–7233.
    [92] S. -J. L.Kang, Sintering: Densification, Grain Growth, and Microstructure, Elsevier, Great Britain, 2005, ISBN 07506 63855.
    [93] H. J. V. Bardeleben, "The chemistry of structural defects in CuInSe2 Solar Cells", 16 (1986) 381-390.
    [94] S. Chen, J. H. Yang, X.G. Gong, A. Walsh, S. H. Wei, "Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4", Phys. Rev. B 81, 245204 (2010) 245204 (1-10).
    [95] S. B. Zhang, S.H. Wei, A. Zunger, H. K. Yoshida, "Defect physics of the CuInSe2 chalcopyrite semiconductor", Phys. Rev. B 57 (1998) 9642-9656.
    [96] S.H. Wei, S. B. Zhang , "Defect properties of CuInSe2 and CuGaSe2", J. Phys. Chem. Solids 66 (2005) 1994-1999.
    [97] S. Levcenko, N. N. Syrbu, E. Arushanov, V. Tezlevan, R. Fernandez-Ruiz, J. M. Merino, M. Leon, "Optical properties of monocrystalline CuIn5Se8", J. Appl. Phys. 99 (2006) 073513 (1-7).
    [98] G. Marin, S. M. Wasim, C. Rincon, G. S. Perez, P. Bocaranda, I. Molina, R. Guevara, J. M. Delgado, "Crystal growth, structural, and optical characterization of the ordered defect compound CuGa5Se8", J. Appl. Phys. 95 (2004) 8280-8285.
    [99] L. L. Baranowski, P. Zawadzki, S. Christensen, D. Nordlund, S. Lany, A. C. Tamboli, L. Gedvilas, D. S. Ginley, W. Tumas, E. S. Toberer, A. Zakutayev, "Control of Doping in Cu2SnS3 through Defects and Alloying", Chem. Mat. (2014) dx.doi.org/10.1021/cm501339v | Chem. Mater. XXXX, XXX, XXX−XXX.
    [100] G. S. Babu, Y.B. K. Kumar, Y. B. K. Reddy, V. S. Raja, "Growth and characterization of Cu2SnSe3 thin films", Mater. Chem. Phys. 96 (2006) 442–446.
    [101] G. Marcano, C. Rincon, L. M. de Chalbaud, D. B. Bracho, G. S. Pe’rez, "Crystal growth and structure, electrical, and optical characterization of the semiconductor Cu2SnSe3", J. Appl. Phys., No. 4 90 (2001) 1847-1853.
    [102] D. Perniu, A. Duta, J. Schoonman, "Defect chemistry of CuSbS2", IEEE, International Semiconductor Conference, 2 (2006) 245 - 248. ISBN: 1-4244-0109-7 DOI: 10.1109/SMICND.2006.283988
    [103] S. B. Zhang, S. -H. Wei, A. Zunger, Elements of Doping Engineering in Semiconductors, Presented at the National Center for Photovoltaics Program Review Meeting Denver, Colorado, November 1998. NREL/CP-590-25746
    [104] V. A. Singh, A. Zunger, "Phenomenology of solid solubilities and ion-implantation sites: An orbital-radii approach", Phys. Rev. B 25 (1982) 907-922.
    [105] Seitz, Solid state physics, Volume 39, Academic Press, INC, New York, 1986.
    [106] D. J. Chadi, K. J. Chang, "Theory of the Atomic and Electronic Structure of DX Centers in GaAs and AlxGa1-xAs Alloys", Phys. Rev. Lett. 61 (1988) 873-876.
    [107] C. H. Park, D.J. Chadi, "Bulk Lattice Instability in II-VI Semiconductors and Its Effect on Impurity Compensation", Phys. Rev. Lett. 75 (1995) 1134-1137.
    [108] J. J. Scragg, P. J. Dale, D. Colombara, L. M. Peter, "Thermodynamic Aspects of the Synthesis of Thin-Film Materials for Solar Cells", ChemPhysChem 13 (2012) 3035–3046.
    [109] D. H. Kuo, W. D. Haung, Y. S. Huang, J. D. Wu, and Y. J. Lin, "Effect of post deposition annealing on the performance of D.C. sputtered Cu2SnSe3 thin films", Surf. Coat. Technol. 205 (2010) S196-S200.
    [110] D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, "The path towards a high-performance solution-processed kesterite solar cell", Sol. Energy Mater. Sol. Cells 95 (2011) 1421–1436.
    [111] P. J. Dale, K. Hoenes, J. Scragg, S. Siebentritt, " A review of the challenges facing kesterite based thin film solar cells", In 34th IEEE Photovoltaic Specialist Conference. IEEE, Philadelphia, (2009) 002080-002085.
    [112] I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.C. Hsu, A. Goodrich, R. Noufi, "Co-evaporated Cu2ZnSnSe4 films and devices", Sol. Energy Mater. Sol. Cells 101 (2012) 154159.
    [113] First Solar, Inc. (February 25, 2014) www.firstsolar.com
    [114] T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D. B. Mitzi "Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4 Solar Cells" Adv. Energy Mater. 3 (2013) 34–38.
    [115] A. Redinger, D.M. Berg, P. J. Dale, S. Siebentritt, "The Consequences of Kesterite Equilibria for Efficient Solar Cells", J. Am. Chem. Soc. 133 (2011) 3320–3323.
    [116] T. Schwarz, O.C. Miredin, P. Choi, M. Mousel, A. Redinger, S. Siebentritt, D. Raabe, "Atom probe study of Cu2ZnSnSe4 thin-films prepared by co-evaporation and post-deposition annealing", Appl. Phys. Lett. 102 (2013) 042101.
    [117] L. Djellal, A. Bouguelia, M. Trari, "Physical and photoelectrochemical properties of p-CuInSe2 bulk material", Mater. Chem. Phys. 109 (2008) 99–104.
    [118] M.L. Liu, F.Q. Huang, L.D. Chen, Y.M. Wang, Y.H. Wang, G.F. Li, Q. Zhang, "p-type transparent conductor: Zn-doped CuAlS2", Appl. Phys. Lett. 90 (2007) 072109.
    [119] X.Y. Shi, F.Q. Huang, M.L. Liu, L. D. Chen, "Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu2ZnSn1−xInxSe4", Appl. Phys. Lett. 94, (2009) 122103.
    [120] S. Chen, X.G. Gong, A. Walsh, S. Wei, "Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4", Appl. Phys. Lett. 96 (2010) 021902(1-3).
    [121] A.R. Jeong, W. Jo, S. Jung, J. Gwak, J.H. Yun, "Enhanced exciton separation through negative energy band bending at grain boundaries of Cu2ZnSnSe4 thin-films", Appl. Phys. Lett. 99 (2011) 082103(1-3).
    [122] M. Tsega, D.H. Kuo, "Defects and Its Effects on Properties of Cu-Deficient Cu2ZnSnSe4 Bulks with Different Zn/Sn Ratios", Appl. Phys. Express 5 (2012) 091201.
    [123] J. Gwak, S. Jung, S. H. Park, S. Ahn, A. Cho, K. Shin, K. H. Yoon, J. H. Yun, "CZTSe Thin Film Growth via a Co-evaporation process using a ZnSe Effusion Source", Electron. Mater. Lett. 8 (2012) 187-190.
    [124] H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw, T. Fukano, T. Ito, T. Motohiro, "Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique", Appl. Phys. Express 1 (2008) 041201(1-2).
    [125] N.B. Chaure, J. Young, A.P. Samantilleke, I.M. Dharmadasa, "Electrodeposition of p–i–n type CuInSe2 multilayers for photovoltaic applications", Sol. Energy Mater. Sol. Cells 81 (2004) 125–133.
    [126] I.M. Dharmadasa, R.P. Burton, M. Simmonds, "Electrodeposition of CuInSe2 layers using a two-electrode system for applications in multi-layer graded bandgap solar cells", Sol. Energy Mater. Sol. Cells 90 (2006) 2191–2200.
    [127] L. Gutay, D. Regesch, J.K. Larsen, Y. Aida, V. Depredur, S. Siebentritt, "Influence of copper excess on the absorber quality of CuInSe2" Appl. Phys. Lett. 99 (2011) 151912(1-3).
    [128] W.C. Hsu, I. Repins, C. Beall, C. DeHart, B. To, W. Yang, Y. Yang, R. Noufi, "Growth mechanisms of co-evaporated kesterite: a comparison of Cu-rich and Zn-rich composition paths", Prog. Photovolt: Res. Appl. 22 (2014) 35–43.
    [129] G.S. Babu, Y.B.K. Kumar, P.U. Bhaskar, V.S. Raja, "Effect of Cu/(Zn+Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films", Sol. Energy Mater. Sol. Cells 94 (2010) 221–226.
    [130] K. Tanaka, Y. Fukui, N. Moritake, H. Uchiki, "Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency", Sol. Energy Mater. Sol. Cells 95 (2011) 838-842.
    [131] W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, D.B. Mitzi, "Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency", Adv. Energy Mater. 4 (2014) 1301465 (1-5).
    [132] I. Repins, C.Beall, N.Vora, C. DeHart, D. Kuciauskas, P.Dippo, B.To, J.Mann, W. C. Hsu, A. Goodrich, R.Noufi, "Co-evaporated Cu2ZnSnSe4 films and devices", Sol. Energy Mater. Sol. Cells 101 (2012) 154–159.
    [133] G. Brammertz, M. Buffie′re, Y. Mevel, Y. Ren, A.E. Zaghi, N. Lenaers, Y. Mols, C. Koeble, J. Vleugels, M. Meuris, J. Poortmans, "Correlation between physical, electrical, and optical properties of Cu2ZnSnSe4 based solar cells", Appl. Phys. Lett. 102 (2013) 013902 (1-3).
    [134] T. Maeda and T. Wada, "First-Principles Studies on Zn Doping in Cu2ZnSnS4 and Cu2ZnSnSe4 During Chemical Bath Deposition of ZnS Buffer Layer", Proceddings of European Photovoltaic Solar Energy Conference and Exhibition (2012) 2790-2793.
    [135] M. Monsefi, D. H. Kuo, "Influence of Mg doping on electrical properties of Cu(In,Ga)Se2 bulk materials", J. Alloy. Compd. 582 (2014) 547–551.
    [136] M. Ibanez, D. Cadavid, U. Anselmi-Tamburini, R. Zamani, S. Gorsse, W. Li, A.M. Lopez, J.R. Morante, J. Arbioldg, A. Cabot, "Colloidal synthesis and thermoelectric properties of Cu2SnSe3 nanocrystals", J. Mater. Chem. A 1 (2013) 1421–1426.
    [137] J. Wang, A. Singh, P. Liu, S. Singh, C. Coughlan, Y. Guo, and K. M Ryan, "Colloidal Synthesis of Cu2SnSe3 Tetrapod Nanocrystals", J. Am. Chem. Soc. 135 (2013) 7835– 7838.
    [138] D.H. Kuo, W.D. Haung, Y.S. Huang, J.D. Wu, Y.J. Lin, "Single-step sputtered Cu2SnSe3 films using the targets composed of Cu2Se and SnSe2", Thin Solid Films 518 (2010) 7218–7221.
    [139] K.M. Kim, H. Tampo, H. Shibata, S. Niki, "Growth and characterization of coevaporated Cu2SnSe3 thin films for photovoltaic applications", Thin Solid Films 536 (2013) 111–114.
    [140] G.S. Babu, Y.B.K. Kumar, Y.B.K. Reddy, V.S. Raja, "Growth and characterization of Cu2SnSe3 thin films", Mater. Chem. Phys. 96 (2006) 442–446.
    [141] G. Marcano, C. Rincon, L. M. de Chalbaud, D. B. Bracho, G. S. Pe’rez, "Crystal growth and structure, electrical, and optical characterization of the semiconductor Cu2SnSe3", J. Appl. Phys., 90 (2001) 1847–1853.
    [142] M. E. Norako, M.J. Greaney, R.L. Brutchey, "Synthesis and Characterization of Wurtzite-Phase Copper Tin Selenide Nanocrystals", J. Am. Chem. Soc. 134 (2012) 23–26.
    [143] J. Fan, W. Carrillo-Cabrera, L. Akselrud, I. Antonyshyn, L. Chen, Y. Grin, "New Monoclinic Phase at the Composition Cu2SnSe3 and Its Thermoelectric Properties", Inorg. Chem. 52 (2013) 11067−11074.
    [144] G. Marcano, L.M. de Chalbaud, C. Rincon, G. S. Perez, "Crystal growth and structure of the semiconductor Cu2SnSe3", Mater. Lett.53 (2002) 151–154.
    [145] J. Jeong, H. Chung, Y.C. Ju, J.W. Moon, J.S. Roh, S. Yoon, Y.R. Do, W. Kim, "Colloidal synthesis of Cu2SnSe3 nanocrystals", Mater. Lett. 64 (2010) 2043–2045.
    [146] R.A. Wibowo, S. Moeckel, H. Yoo, A. Hoelzing, R. Hock, P.J. Wellmann, "Formation of Cu2SnSe3 from stacked elemental layers investigated by combined in situ X-ray diffraction and differential scanning calorimetry techniques", J. Alloy. Compd. 588 (2014) 254–258.
    [147] G.E. Delgadoa, A.J. Mora, G. Marcanob, C. Rincon, "Crystal structure refinement of the semiconducting compound Cu2SnSe3 from X-ray powder diffraction data", Mater. Res. Bull. 38 (2003) 1949–1955.
    [148] J. Fan, H. Liu, X. Shi, S. Bai, X. Shi, L. Chen, "Investigation of thermoelectric properties of Cu2GaxSn1-xSe3 diamond-like compounds by hot pressing and spark plasma sintering", Acta Materialia 61 (2013) 4297–4304.
    [149] X. LU, D. T. MORELLI, "Thermoelectric Properties of Mn-Doped Cu2SnSe3", J. Electron. Mater. No. 6 41 (2012) 1554-1558.
    [150] J. Y. Cho, X. Shi, J. R. Salvador, G. P. Meisner, J. Yang, H. Wang, A. A. Wereszczak, X. Zhou, C. Uher, "Thermoelectric properties and investigations of low thermal conductivity in Ga-doped Cu2GeSe3", Phys. Rev. B 84 (2011) 085207(1-9).
    [151] E. J. Skoug, J. D. Cain, D. T. Morelli, "Thermoelectric properties of the Cu2SnSe3– Cu2GeSe3 solid solution", J. Alloy. Compd. 506 (2010) 18–21.
    [152] U.S. Geological Survey, Mineral commodity summaries 2012: U.S. Geological Survey, 2012, 198 p. ISBN 978–1–4113–3349–9.
    [153] C. Garza, S. Shaji, A. Arato, E. P. Tijerina, G. A. Castillo,T. D. Roy, B. Krishnan, "p- type CuSbS2 thin films by thermal diffusion of copper in to Sb2S3", Sol. Energy Mater. Sol. Cells 95 (2011) 2001–2005.
    [154] D. Colombara, L.M. Peter, K.D. Rogers, J.D. Painter, S. Roncallo, "Formation of CuSbS2 and CuSbSe2 thin films via chalcogenisation of Sb–Cu metal precursors", Thin Solid Films 519 (2011) 7438 –7443.
    [155] H. J. Lewerenz, "Development of copper indiumdisulfide into a solar material", Sol. Energy Mater. Sol. Cells 83 (2004) 395-407.
    [156] L. Yu , R. S. Kokenyesi, D. A. Keszler , A. Zunger, "Inverse Design of High Absorption Thin-Film Photovoltaic", Adv. Energy Mater. 3 (2013) 43–48.
    [157] W. Septina, S. Ikeda, Y. Iga, T. Harada, M. Matsumura, "Thin film solar cell based on CuSbS2 absorber fabricated from an electrochemically deposited metal stack", Thin Solid Films 550 (2014)700–704.
    [158] C. Yan, Z. Su, E. Gu, T. Cao, J. Yang, J. Liu, F. Liu, Y. Lai, J. Lia, Y. Liu, "Solution-based synthesis of chalcostibite (CuSbS2) nanobricks for solar energy conversion", RSC Adv. 2 (2012) 10481–10484.
    [159] J. Zhou, G. -Q. Bian, Q. -Y. Zhu, Y. Zhang, C. -Ying Li, J. Dai, "Solvothermal crystal growth of CuSbQ2 (Q = S, Se) and the correlation between macroscopic morphology and microscopic structure", J. Solid State Chem.182 (2009) 259–264.
    [160] M. F. Razmara, C. M. B. Henderson, R. A. D. Pattrick , A. M. T Bell, J. M. Charnock, "The crystal chemistry of the solid solution series between chalcostibite (CuSbS2) and emplectite (CuBiS2)", Mineral. Mag. 61 (1997) 79-88.
    [161] A. Kyono, M. Kimata, "Crystal structures of chalcostibite (CuSbS2) and emplectite (CuBiS2): Structural relationship of stereochemical activity between chalcostibite and emplectite", Am. Miner. 90 (2005) 162–165.
    [162] Y. Rodriguez-Lazcano, M. T. S. Nair, P. K. Nair, "Photovoltaic p-i-n Structure of Sb2S3 and CuSbS2 Absorber Films Obtained via Chemical Bath Deposition", J. Electrochem. Soc. 152 (2005) G635-G638.
    [163] I. Popovici, A. Duta, "Tailoring the Composition and Properties of Sprayed CuSbS2 Thin Films by Using Polymeric Additives", Int. J. Photoenergy 2012 (2012) 962649 (1-6). doi:10.1155/2012/962649
    [164] A. Rabhi, M. Kanzari, "Structural, optical and electrical properties of CuSbS2 these amorphous films:Effect of the thickness variation", Chalcogenide Lett. 8 (2011) 383-390.
    [165] A. W. Welch, P. P. Zawadzki, S. Lany, C. A. Wolden, A. Zakutayev, "Self-regulated growth and tunable properties of CuSbS2 solar absorbers", Sol. Energy Mater. Sol. 132 (2015) 499-506.
    [166] P. Kumar, K. Singh, O. N. Srivastava, "Template free-solvothermaly synthesized copper selenide (CuSe, Cu2-xSe, β-Cu2Se and Cu2Se) hexagonal nanoplates from different precursors at low temperature", J. of Crystal Growth 312 (2010) 2804-2813.
    [167] V. M. Glazov, A. S. Pashinkin, V. A. Fedorov, "Phase equilibria in the Cu-Se system", Inorg. Mater. 36 (2000) 641-652.
    [168] R. C. Sharma, Y. A. Chang, "The Se-Sn (Selenium-Tin System)", Bulletin of alloy phase diagrams 7 (1986) 68.
    [169] K. Liu, H. Liu, J. Wang, L. Feng, "Synthesis and characterization of SnSe2 hexagonal nanoflakes", Materials Lett. 63 (2009) 512–514.
    [170] A. Bruckmann, A. Krebs, C. Bolm, "Organocatalytic reactions: effects of ball milling, microwave and ultrasound irradiation", Green Chem. 10 (2008) 1131–1141.
    [171] C. Suryanarayana," Mechanical alloying and milling", Prog. Mat. Sci. 46 (2001) 1-184.
    [172] H. Mioa, J. Kanoa, F. Saitoa, K. Kanekob, "Optimum revolution and rotational directions and their speeds in planetary ball milling", Int. J. Miner. Process. 74S (2004) S85–S92.
    [173] S. Rosenkranz, S. Breitung-Faes, A. Kwade, "Experimental investigations and modelling of the ball motion in planetary ball mills", Powder Technol. 212 (2011) 224–230.
    [174] B. Fultz, J. Howe, Transmission Electron Microscopy and Diffractometry of Materials, Graduate Texts in Physics, DOI 10.1007/978-3-642-29761-8_1, c Springer-Verlag Berlin Heidelberg 2013.
    [175] B. G. Yacobi, Semiconductor Materials: An Introduction to Basic Principles, Kluwer Academic/Plenum Publishers, London, 2002.
    [176] D. K. Schroder, Semiconductor Material and Device Characterization, Jhon Willey and Sons, NY, 1990.
    [177] S.O. Kasap, Electrical Engineering Materials and Devices, Irwin, 1997, pp. 133-137. http://www.ElectronicMaterials.Usask.ca
    [178] B.G. Streetman, Solid State Electronic Devices, Prentice Hall, 1995.
    [179] JCPDS (Joint Committee on Powder Diffraction Standards) Card No. 00-052-0868.
    [180] L.J. Van der Pauw, "A method of measuring Specific Resistivity and Hall Effect of Discs of Arbitrary Shape", Philips Res. Rep.13 (1958) 1–9.
    [181] D.H. Kuo, M. Tsega, "Hole mobility enhancement of Cu-deficient Cu1.75Zn(Sn1-yAly)Se4 bulks", J. Solid State Chem. 206 (2013) 134–138.
    [182] M. Tsega, D.H. Kuo, "The performance of the donor and acceptor doping in the Cu-rich Cu2ZnSnSe4 bulks with different Zn/Sn ratios", Solid State Commun. 164 (2013) 42–46.
    [183] D. H. Kuo, M. Tsega, "The investigation of CuxZnSnSe4 bulks with x = 1.4–2.2 for debating the Cu excess and Cu deficiency used in thin-film solar cells", Mater. Res. Bull. 49 (2014) 608–613.
    [184] A. Nagaoka, K. Yoshino, H. Taniguchi, T. Taniyama, H. Miyake, "Growth of Cu2ZnSnSe4 single crystals from Sn solutions", J. Cryst. Growth 354 (2012) 147–151.
    [185] T. Maeda, S. Nakamura, T. Wada, "First Principles Calculations of Defect Formation in In-Free Photovoltaic Semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4", Jpn. J. Appl. Phys. 50 (2011) 04DP07 (1-6).
    [186] B. D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edition, Prentice-Hall, New Jersey, 2001.
    [187] R. D. Shannon, Acta Crystallogr. Sect. A: Found. Crystallogr. 32 (1976) 751–766.
    [188] J.E. Jaffe, A. Zunger, "Anion displacements and the band-gap anomaly in ternary ABC2 chalcopyrite semiconductors", Phys. Rev. B27 (1983) 5176–5179.
    [189] M. Monsefi, D. H. Kuo, "A p-n transition for Sn-doped Cu(In,Ga)Se2 bulk materials", J. Solid State Chem. 204 (2013) 108-112.
    [190] M. Monsefi, D.H. Kuo, "Influence of Cu content on the n→p transition of 15% Sn- doped Cux(In,Ga)Se2 bulk materials" J. Alloy. Compd. 580 (2013) 348 – 353.
    [191] H. Matsushita, T. Maeda, A. Katsui, T. Takizawa, "Thermal analysis and synthesis f rom the melts of Cu-based quaternary compounds Cu–III–IV–VI4 and Cu2–II–IV–VI4 (II=Zn, Cd; III=Ga, In; IV=Ge, Sn; VI=Se)", J. Cryst. Growth 208 (2000) 416422.
    [192] I.D. Olekseyuk, L.D. Gulay, I.V. Dydchak, L.V. Piskach, O.V. Parasyuk, O.V. Marchuk, "Single crystal preparation and crystal structure of the Cu2Zn/Cd,Hg/SnSe4 compounds", J. Alloys Compd. 340 (2002) 141–145.
    [193] D. H. Kuo, W. Wubet, "Mg dopant in Cu2ZnSnSe4: An n-type former and a promoter of electrical mobility up to 120 cm2 V−1 s−1", J. Solid State Chem. 215 (2014) 122–127.
    [194] W. Septina, S. Ikeda, A. Kyoraiseki, T. Harada, M. Matsumura, "Single-step electrodeposition of a microcrystalline Cu2ZnSnSe4 thin film with a kesterite structure", Electrochim. Acta 88 (2013) 436–442.
    [195] S.E. Liu, Y.H. Lin, H.Y. Huang, "Preparation of Cu2ZnSnSe4 Absorber Layer by Nonvacuum Method", Jpn. J. Appl. Phys. 52 (2013) 1212011–1212014.
    [196] A. Redinger, K. Hones, X. Fontane, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Perez-Rodriguez, S. Siebentritt, "Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films", Appl. Phys. Lett. 98 (2011) 1019071–1019073.
    [197] M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, E. Mellikov, "Cu2Zn1–xCdx Sn(Se1–ySy)4 solid solutions as absorber materials for solar cells" Phys. Status Solidi A 205 (2008) 167–170.
    [198] L. Zhang, F.F. Liu, F.Y. Li, Q. He, B.Z. Li, C.J. Li, "Structural, optical and electrical properties of low-temperature deposition Cu(InxGa1−x)Se2 thin films", Sol. Energy Mater. Sol. Cells 99 (2012) 356–361.
    [199] M. Monsefi, D.H. Kuo, "Defect state and electric transport of the Cu-poor, Cu-rich, and In-rich Cu(In,Ga)Se2 bulk materials", Mater. Chem. Phys. 145 (2014) 255–259.
    [200] F. Gao, S. Yamazoe, T. Maeda, T. Wada, "Structural Study of Cu-Deficient Cu2(1-x)ZnSnSe4 Solar Cell Materials by X-ray Diffraction and X-ray Absorption Fine Structure", Jpn. J. Appl. Phys. 51 (2012) 10NC28.
    [201] R.D. Shannon, C.T. Prewitt, "Effective Ionic Radii in Oxides and Fluorides", Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 25 (1969) 925–946.
    [202] Z. Lei, Q. Ying-Huai, Z. Yu-Long, G. Xiu-Quan, S. Duan-Ming, S. Chang-Bin, "Facile Synthesis of Cu2SnSe3 as Counter Electrodes for Dye-Sensitized Solar Cells", Acta Phys. Chim. Sin. 29 (11) (2013) 2339-2344.
    [203] A. U. Ubale, Y. S. Sakhare, S. G. Ibrahim, M. R. Belkhedkar, "Structural, optical and electric properties of nanocrystalline MgSe thin films deposited by chemical route using triethanolamine as a complexing agent", Solid State Sci. 23 (2013) 96–101.
    [204] M. Tsega, D. H. Kuo, "Reactive sintering of Cu2ZnSnSe4 pellets at 600 °C with double sintering aids of Sb2S3 and Te" J. Alloy. Compd. 580 (2013) 217–222.
    [205] V. P. Bhatt, K. Gireesan, G. R. Pandya, "Growth and characterization of SnSe and SnSe2 single crystals" J. Cryst. Growth 96 (1989) 649–651.
    [206] M.E. Beck, T. Weiss, D. Fischer, S. Fiechter, A. Jager-Waldau, M.Ch. Lux-Steiner, "Structural analysis of Cu1−xAgxGaSe2 bulk materials and thin films", Thin Solid Films 361-362 (2000) 130-134.
    [207] R. Noufi, R. Axton, C. Herrington, S.K. Deb, "Electronic properties versus composition of thin films of CuInSe2", Appl. Phys. Lett. 45(6) (1984) 668-670.
    [208] JCPDS (Joint Committee on Powder Diffraction Standards) Card no. 88-0822.
    [209] Y. R.-Lazcano, M.T.S. Nair, P.K. Nair, "CuSbS2 thin film formed through annealing chemically deposited Sb2S3–CuS thin films", J. Cryst. Growth 223 (2001) 399–406.
    [210] Z. Zhang, C. Zhou, Y. Liu, J. Li, Y. Lai, M. Jia, "CuSbS2 Nanobricks as Electrode Materials for Lithium Ion Batteries", Int. J. Electrochem. Sci. 8 (2013) 10059- 10067.
    [211] A. Rabhi, M. Kanzari , B. Rezig, "Optical and structural properties of CuSbS2 thin films grown by thermal evaporation method", Thin Solid Films 517 (2009) 2477–2480.
    [212] A. Rabh , M. Kanzari, "Effect of air annealing on CuSbS2 thin film grown by vacuum thermal evaporation", Chalcogenide Lett. 8 (2011) 255-262.
    [213] A. Rabhi, M. Kanzari, B. Rezig, "Growth and vacuum post-annealing effect on the properties of the new absorber CuSbS2 thin films", Mater. Lett. 62 (2008) 3576–3578.
    [214] D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline, A. G. Schrott "A High-Efficiency Solution-Deposited Thin-Film Photovoltaic Device", Adv. Mater. 20 (2008) 3657–3662.
    [215] R. E. Ornelas-Acosta, B. Krishnan, D. Avellaneda, S. Shaji, G. A. Castillo, T. K. Das Roy, "CuSbS2 thin films by heating Sb2S3/Cu layers for PV applications", J Mater Sci: Mater Electron, Springer Science+Business Media New York 2014. DOI 10.1007/s10854-014-2173-y.
    [216] A. Wachtel, A. Norekia, " Growth and Characterization of CuSbS2 crystals", J. Electron. Mater. 9 (1980) 281-297.

    無法下載圖示 全文公開日期 2020/01/26 (校內網路)
    全文公開日期 2025/01/26 (校外網路)
    全文公開日期 2025/01/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE