簡易檢索 / 詳目顯示

研究生: 王鉫允
Chia-Yun Wang
論文名稱: 合成含苯並咪唑側基之聚醯亞胺質子交換膜及其性質研究
Synthesis and Characterization of Polyimides Bearing Benzimidazole Pendant Groups for Proton Exchange Membrane
指導教授: 陳燿騰
Yaw-Terng Chern
口試委員: 華沐怡
Mu-Yi Hua
黃炳照
Bing-Joe Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 102
中文關鍵詞: 苯並咪唑聚醯亞胺質子交換膜
外文關鍵詞: Benzimidazole, Polyimide, Proton exchange membrane
相關次數: 點閱:228下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究成功合成含有苯並咪唑側基的新二胺單體
2, 2-bis(4-(2-(5-aminobenzimidazoly))phenyl)propane (Bis/IM/NH2),並與其他芳香族二胺及六環酸酐1,4,5,8-Naphthalenetetracarboxylic dianhydride (NTDA)進行聚縮合反應合成聚醯亞胺(PI)共聚物,其固有黏度範圍在0.75~1.59 dL/g,均可塗佈成具韌性薄膜,這些共聚物均有好的熱安定性,於氮氣下10 %裂解溫度皆超過450 ℃以上。本研究所合成PI共聚物的磷酸摻雜量均低於m-PBI,但質子傳導度幾乎都比m-PBI高,這結果顯示本研究所合成含醚基及異丙叉基團為主鏈,並含有苯並咪唑側基之聚醯亞胺共聚物有利於質子通道形成,尤其是PF系列,因為三氟甲基的疏水性更有利於離子通道形成,在三個系列中有最高的質子傳導度,例如Bis7PF2.7DMB0.3在200℃時之質子傳導度(204% H3PO4 uptake , 84.2 mS/cm)高於m-PBI (280% H3PO4 uptake, 56.8 mS/cm),很有潛力應用於高溫型燃料電池的質子交換膜。


A novel diamine, 2,2-bis(4-(2-(5-aminobenzimidazoly))phenyl)prop-
ane(Bis/IM/NH2), containing a benzimidazole pendant groups and flexible ether linkage was synthesized successfully. The polyimides were synthesized by condensation polymerization from 2,2-bis(4-(2-(5-amino-
benzimidazoly))phenyl)propane(Bis/IM/NH2) and 1,4,5,8-Naphthalene-
tetracarboxylic dianhydride(NTDA). They had inherent viscosities of 0.75~1.59 dL/g. All polyimides formed tough and transparent films. The PIs exhibited high thermal stability with 10 % decomposition temperature more than 450 oC in nitrogen. The proton conductivity of phosphoric acid doped PI was dependent on doping PA level and temperature. These PIs with relatively low acid doping level have higher proton conductivity than m-BPI. For example, Bis7PF2.7DMB0.3 had the highest proton conductivity at 200 oC (204 % H3PO4 uptake, 84.2 mS/cm) among those polyimides.

摘要 I Abstract II 目錄 III 圖索引 VI 表索引 VIII 第一章 緒論 1 1.1前言 1 1.2燃料電池的介紹 2 1.2.1 燃料電池的原理 2 1.2.2 燃料電池的優點 4 1.2.3 燃料電池的種類 5 1.3低溫質子交換膜燃料電池 11 1.3.1 直接甲醇燃料電池 11 1.3.2直接甲醇燃料電池的核心 12 1.4高溫質子交換膜燃料電池 14 1.4.1 高溫質子交換膜燃料電池簡介 14 1.4.2 高溫質子交換膜燃料電池優點歸納 15 1.4.3 聚苯並咪唑薄膜摻雜磷酸的質子傳導機制 18 1.5交聯介紹 20 1.5.1 離子交聯 20 1.5.2 共價交聯 22 1.6質子交換膜材料文獻回顧 25 1.7研究動機與內容 29 第二章 實驗 31 2.1實驗藥品 31 2.2聚醯亞胺共聚物實驗程序 33 2.2.1單體合成 34 2.2.2聚醯亞胺共聚物合成 37 2.3 聚合物之物性與化性分析 40 第三章 結果與討論 44 3.1單體與PIs的合成 44 3.2固有黏度 51 3.3溶解度測試 52 3.4交聯反應證明 54 3.5熱性質分析 57 3.6 PI共聚合物組成對磷酸摻雜量的效應 60 3.7膨潤度的測試 64 3.8 質子傳導度分析 66 3.8.1溫度對質子傳導度的效應 66 3.8.2化學構造對質子傳導度的效應 72 3.9 機械性質量測 77 3.9.1未摻雜磷酸薄膜機械性質量測 77 3.9.2摻雜磷酸薄膜機械性質量測 80 3.10 氧化安定性測試 83 第四章 結論 85 第五章 參考文獻 87

1. 溫武義,燃料電池技術,全華圖書股份有限公司,2004。
2. 黃鎮江,綠色能源,全華圖書股份有限公司,2014。
3. 梁麗萍; 高蔭本; 固體氧化物燃料電池與陶瓷材料,材料科學與工程,1997。
4. 陳軍; 袁華堂; 陳憲偉; 新能源材料,五南圖書出版股份有限公司,2004。
5. 張嘉修,生質氫能,科學發展,2009。
6. Smitha, B.; Sridhar, S.; Khan, A. A., Solid polymer electrolyte membranes for fuel cell applications - a review. J. Membr. Sci. 2005, 259 (1-2), 10-26.
7. Rosli, R. E.; Sulong, A. B.; Daud, W. R. W.; Zullzifley, M. A.; Husaini, T.; Rosli, M. I.; Majlan, E. H.; Haque, M. A., A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int. J. Hydrog. Energy. 2017, 42 (14), 9293-9314.
8. Sammes, N.; Bove, R.; Stahl, K., Phosphoric acid fuel cells: Fundamentals and applications. Curr. Opin. Solid State Mat. Sci. 2004, 8 (5), 372-378.
9. Song, C.; Hui, S. R.; Zhang, J., High-temperature PEM fuel cell catalysts and catalyst layers. PEM Fuel Cell Electrocatalysts and Catalyst Layers. 2008, 861-888.
10. Bose, S.; Kuila, T.; Thi, X. L. N.; Kim, N. H.; Lau, K. T.; Lee, J. H., Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Prog. Polym. Sci. 2011, 36 (6), 813-843.
11. Garsany, Y.; Gould, B. D.; Baturina, O. A.; Swider-Lyons, K. E., Comparison of the Sulfur Poisoning of PBI and Nafion PEMFC Cathodes. Electrochem. Solid State Lett. 2009, 12 (9), B138-B140.
12. Andreasen, S. J.; Vang, J. R.; Kaer, S. K., High temperature PEM fuel cell performance characterisation with CO and CO2 using electrochemical impedance spectroscopy. Int. J. Hydrog. Energy 2011, 36 (16), 9815-9830.
13. Clouser, S. J.; Huang, J. C.; Yeager, E., Temperature-dependence of the tafel slope for oxygen reduction on platinum in concentrated phosphoric-acid. J. Appl. Electrochem. 1993, 23 (6), 597-605.
14. Zhu, Y.; Zhu, W. H. H.; Tatarchuk, B. J., Performance comparison between high temperature and traditional proton exchange membrane fuel cell stacks using electrochemical impedance spectroscopy. J. Power Sources. 2014, 256, 250-257.
15. Kojima, K.; Fukazawa, T., Current status and future outlook of fuel cell vehicle development in TOYOTA. ECS Trans. 2015, 69 (17), 213-219.
16. Chandan, A.; Hattenberger, M.; El-Kharouf, A.; Du, S.; Dhir, A.; Self, V.; Pollet, B. G.; Ingram, A.; Bujalski, W., High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)–A review. J. Power Sources. 2013, 231, 264-278.
17. Kondratenko, M. S.; Gallyamov, M. O.; Khokhlov, A. R., Performance of high temperature fuel cells with different types of PBI membranes as analysed by impedance spectroscopy. Int. J. Hydrog. Energy. 2012, 37 (3), 2596-2602.
18. Ma, Y. L.; Wainright, J. S.; Litt, M. H.; Savinell, R. F., Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells. J. Electrochem. Soc. 2004, 151 (1), A8-A16.
19. Glipa, X.; Bonnet, B.; Mula, B.; Jones, D. J.; Rozière, J., Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole. J. Mater. Chem. 1999, 9 (12), 3045-3049.
20. Bouchet, R.; Miller, S.; Duclot, M.; Souquet, J., A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole. Solid State Ion. 2001, 145 (1-4), 69-78.
21. Kerres, J. A., Development of ionomer membranes for fuel cells. J. Membr. Sci. 2001, 185 (1), 3-27.
22. Xing, D.; Kerres, J., Improved performance of sulfonated polyarylene ethers for proton exchange membrane fuel cells. Polym. Adv. Technol. 2006, 17 (7-8), 591-597.
23. Davis, H. J.; Thomas, N. W., Chemical modification of polybenzimidazole semipermeable. Grant US-4020142-A. 1977.
24. Yang, J.; Xu, Y.; Liu, P.; Gao, L.; Che, Q.; He, R., Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes. Electrochim. Acta. 2015, 160, 281-287.
25. Yang, J.; Jiang, H.; Gao, L.; Wang, J.; Xu, Y.; He, R., Fabrication of crosslinked polybenzimidazole membranes by trifunctional crosslinkers for high temperature proton exchange membrane fuel cells. Int. J. Hydrog. Energy. 2018, 43 (6), 3299-3307.
26. Tian, X.; Wang, S.; Li, J.; Liu, F.; Wang, X.; Chen, H.; Wang, D.; Ni, H.; Wang, Z., Benzimidazole grafted polybenzimidazole cross-linked membranes with excellent PA stability for high-temperature proton exchange membrane applications. Appl. Surf. Sci. 2019, 465, 332-339.
27. Kreuer, K. D., On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 2001, 185 (1), 29-39.
28. Fontanella, J. J.; Wintersgill, M. C.; Wainright, J. S.; Savinell, R. F.; Litt, M., High pressure electrical conductivity studies of acid doped polybenzimidazole. Electrochim. Acta 1998, 43 (10-11), 1289-1294.
29. Wainright, J. S.; Wang, J. T.; Weng, D.; Savinell, R. F.; Litt, M., Acid-doped polybenzimidazoles - a new polymer electrolyte. J. Electrochem. Soc. 1995, 142 (7), L121-L123.
30. Li, Q.; Hjuler, H. A.; Bjerrum, N. J., Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications. J. Appl. Electrochem. 2001, 31 (7), 773-779.
31. Zhang, H. W.; Shen, P. K., Recent Development of Polymer Electrolyte Membranes for Fuel Cells. Chem. Rev. 2012, 112 (5), 2780-2832.
32. Pandey, R. P.; Shahi, V. K., Aliphatic-aromatic sulphonated polyimide and acid functionalized polysilsesquioxane composite membranes for fuel cell applications. J. Mater. Chem. A 2013, 1 (45), 14375-14383.
33. Pan, H.; Zhang, Y.; Pu, H.; Chang, Z., Organic-inorganic hybrid proton exchange membrane based on polyhedral oligomeric silsesquioxanes and sulfonated polyimides containing benzimidazole. J. Power Sources 2014, 263, 195-202.
34. Gu, X.; Xu, N.; Guo, X.; Fang, J., Synthesis, proton conductivity and chemical stability of novel sulfonated copolyimides-containing benzimidazole groups for fuel cell applications. High Perform. Polym. 2013, 25 (5), 508-517.
35. Chen, K.; Hu, Z.; Endo, N.; Fang, J.; Higa, M.; Okamoto, K., Sulfonated polyimides bearing benzimidazole groups for direct methanol fuel cell applications. J. Membr. Sci. 2010, 351 (1-2), 214-221.
36. Chen, J. C.; Wu, J. A.; Lee, C. Y.; Tsai, M. C.; Chen, K. H., Novel polyimides containing benzimidazole for temperature proton exchange membrane fuel. J. Membr. Sci. 2015, 483, 144-154.
37. Genies, C.; Mercier, R.; Sillion, B.; Petiaud, R.; Cornet, N.; Gebel, G.; Pineri, M., Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium. Polymer. 2001, 42 (12), 5097-5105.
38. Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S., Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37 (7), 907-974.
39. Kang, Y.; Zou, J.; Sun, Z.; Wang, F.; Zhu, H.; Han, K.; Yang, W.; Song, H.; Meng, Q., Polybenzimidazole containing ether units as electrolyte for high temperature proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2013, 38 (15), 6494-6502.
40. Kim, T. H.; Kim, S. K.; Lim, T. W.; Lee, J. C., Synthesis and properties of poly(aryl ether benzimidazole) copolymers for high-temperature fuel cell membranes. J. Membr. Sci. 2008, 323 (2), 362-370.
41. 陳泰安,合成新型含苯咪唑側基之聚醯亞胺與含苯並唖唑側基之聚苯咪唑及其性質研究,台灣科技大學化工系碩士論文,2014。
42. 陳思源,合成新型含苯並噁唑側基之聚苯咪唑於中溫型燃料電池質子傳導膜之性質研究,台灣科技大學化工系碩士論文,2013。
43. Mader, J. A.; Benicewicz, B. C., Sulfonated Polybenzimidazoles for high temperature PEM fuel cells. Macromolecules. 2010, 43, 6706.
44. Wang, F.; Hickner, M.; Kim, Y. S.; Zawodzindki, T. A.;
McGrath, J. E., Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes. J. Membr. Sci. 2002, 197, 231.
45. Li X.; Chen X.; Benicewicz, B. C., Synthesis and properties of phenylindane-containing polybenzimidazole (PBI) for high-temperature polymer electrolyte membrane fuel cells (PEMFCs). J Power Sources. 2013, 243.
46. Wang, L.; Liu, Z.; Ni, J.; Xu, M.; Pan, C.; Wang, D.; Liu, D., Preparation and investigation of block polybenzimidazole membranes with high battery performance and low phosphoric acid doping for use in high-temperature fuel cells. J. Membr. Sci. 2019, 572, 350-357.
47. Hu. M.; Ni. J.; Zhang. B.; Neelakandan. S.; Wang. L., Crosslinked polybenzimidazoles containing branching structure as membrane materials with excellent cell performance and durability for fuel cell applications. Journal of Power Sources. 2018, 389, 222-229.
48. Yang. J.; Xu. Y.; Liu. P.; Gao. L.; Che. Q.; He. R., Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes.
Electrochimica Acta. 2015, 160, 281-287.
49. Wang, S.; Zhao, C.; Ma, W.; Zhang, G.; Liu, Z.; Ni, J.; Li, M., Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells. J. Membr. Sci. 2012, 411-412, 54–63.
50. Tian, X.;Wang, S.; Li, J.; Liu, F.; Wang, X.; Chen, H.; Wang, D.; Ni, H.; Wang, Z., Benzimidazole grafted polybenzimidazole cross-linked membranes with excellent PA stability for high-temperature proton exchange membrane applications. Appl. Surf. Sci. 2019, 465, 332–339.
51. Ou. T.; Chen. H.; Hu. B.; Zheng. H.; Li. W.; Wang. Y., A facile method of asymmetric ether-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cell. Int. J. Hydrog. Energy. 2018, 43(27), 12337-12345.

無法下載圖示 全文公開日期 2024/08/01 (校內網路)
全文公開日期 2024/08/01 (校外網路)
全文公開日期 2024/08/01 (國家圖書館:臺灣博碩士論文系統)
QR CODE