簡易檢索 / 詳目顯示

研究生: 李祥榕
Hsiang-Jung Lee
論文名稱: 新型含酮基脂環族二酸酐及其聚醯亞胺之合成
Synthesis and Characterization of Novel Alicyclic Dianhydrides and Polyimides Containing Carbonyl Functional Groups
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 游進陽
江騏瑞
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 228
中文關鍵詞: 甲氧基羰基化反應脂環族二酸酐脂環族聚醯亞胺
外文關鍵詞: methoxycarbonylation, alicylcic dianhydride, alicyclic polyimide
相關次數: 點閱:143下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,成功合成出具有酮基的新型脂環族二酸酐 (1R,2R,3S,4R,4aS, 5S,6S,7R,8S,8aS,9aR,10aR)-tetramethyl 4a,8a-diethyl-9,10-dioxotetradecahydro- 1,4:5,8-dimethanoanthracene-2,3,6,7-tetracarboxylic dianhydride (CDEDA)與 (1R, 2S,3R,4S,4aR,5S,6R,7S,8R,8aR,9aS,10aS)-tetramethyl 4a,8a,9a,10a-tetramethyl- 9,10-dioxotetradecahydro-1,4:5,8-dimethanoanthracene-2,3,6,7-tetracarboxylic dianhydride (CTMDA)。本研究也針對合成步驟中的 Diels-Alder反應、親核取代
    反應、甲氧基羰基化反應和水解關環反應對於產物結構構型的影響,以 X-ray單
    晶繞射佐證化合物的構型。最後,將此二脂環族二酸酐分別與芳香族二胺 4,4-oxydianiline (ODA)及 2,2’-bis(trifluoromethyl)benzidine (TFMB)合成半脂環族聚醯
    亞胺 這些聚醯亞胺展現良好的熱穩定性與機械強度 並且具有極佳的溶解度 。
    其薄膜在厚度 15 μm以下 也 展現極佳的光學性質與透光度 。


    In this study, we develop new synthesis routes to prepare two novel alicyclic dianhydrides with ketone functional groups, and successfully synthesize
    (1R,2R,3S, 4R,4aS,5S,6S,7R,8S,8aS,9aR,10aR)-tetramethyl 4a,8a-diethyl-9,10- dioxotetradecahydro-1,4:5,8-dimethanoanthracene-2,3,6,7-tetracarboxylic dianhydride (CDEDA) and (1R,2S,3R,4S,4aR,5S,6R,7S,8R,8aR,9aS,10aS)- tetramethyl 4a,8a,9a,10a-tetramethyl- 9,10-dioxotetradecahydro-1,4:5,8- dimethanoanthracene-2,3,6,7-tetracarboxylic dianhydride (CTMDA). We also focus on Diels-Alder reaction, nucleophilic substitution reaction, methoxycarbonylation raction, and hydrolysis reaction and their influences to configurations of compounds in each steps, while proofing their structures by using X-ray single crystal diffraction.
    Polyimides were prepared using those two anhydrides with 4,4-oxydianiline (ODA) and 2,2’-Bis(trifluoromethyl)benzidine (TFMB), showing excellent thermal stability, mechanical properties, and excellent solubility in organic solvents. Them membranes of those polyimides also shows their transparency and excellent optical properties under 15 μm.

    摘要 II Abstract III 目錄 IV Figure 索引 VI Scheme索引 XI Table 索引 XIII 第一章 緒論 1 1.1 前言 1 1.2 聚醯亞胺的背景 2 1.3 聚醯亞胺的合成 3 1.4 無色聚醯亞胺 5 1.5 脂環族二酸酐的合成路徑 6 1.6 脂環族酸酐常見的合成反應之細部探討 41 1.7 研究動機 52 第二章 實驗部分 53 2.1 實驗藥品 53 2.1 實驗儀器 55 2.1 單體合成 56 2.2 高分子合成 67 2.3 高分子薄膜製備 69 第三章 結果與討論 70 3.1 單體的合成與表徵 70 3.2 高分子的合成及鑑定 133 3.3 高分子的分子量與溶解 度 140 3.4 高分子的熱穩定性 142 3.5 高分子的機械性質高分子的機械性質 148 3.6 高分子的光學性質高分子的光學性質 149 第四章 結論 154 附 錄 156

    1. Yang, S.Y. Advanced polyimide materials: synthesis, characterization, and applications. Elsevier: 2018.
    2. Kreuz, J. A. Hydrolyses of polyamic‐acid solutions. Journal of Polymer Science Part A: Polymer Chemistry. 1990, 28 (13), 3787-3793.
    3. Hasegawa, M.; Horie, K. Photophysics, photochemistry, and optical properties of polyimides. Progress in Polymer Science . 2001, 26 (2), 259-335.
    4. Konovalov, A. l.; Kiselev, V. D. Diels—Alder reaction. Effect of internal and external factors on the reactivity of diene—dienophile systems. 2003, 52 (2), 293-311.
    5. Alder, K.; Stein, G. Über den sterischen Verlauf von Additions‐und Substitutions‐reaktionen. III. Über endo‐exo‐Isomerie (1).(Gemeinsam mit Else Rolland und Gottfried Schulze). Justus Liebigs Annalen der Chemie. 1934, 514 (1), 211-227.
    6. Martin, J. G.; Hill, R. K. Stereochemistry of the Diels-Alder Reaction. Chemical Reviews. 1961, 61 (6), 537-562.
    7. Itamura, S.; Yamada, M.; Tamura, S.; Matsumoto, T.; Kurosaki, T. Soluble polyimides with polyalicyclic structure. 1. Polyimides from bicyclo [2.2. 2] oct-7-ene-2-exo, 3-exo, 5-exo, 6-exo-tetracarboxylic 2, 3: 5, 6-dianhydrides. Macromolecules. 1993, 26 (14), 3490-3493.
    8. Matsumoto, T.; Kurosaki, T. Soluble and Colorless Polyimides from Bicyclo [2.2. 2] octane-2, 3, 5, 6-tetracarboxylic 2, 3: 5, 6-Dianhydrides. Macromolecules. 1997, 30 (4), 993-1000.
    9. Seino, H.; Sasaki, T.; Mochizuki, A.; Ueda, M. Synthesis of fully aliphatic polyimides. High Performance Polymers. 1999, 11 (3), 255-262.
    10. Yamada, M.; Kusama, M.; Matsumoto, T.; Kurosaki, T. Soluble polyimides with polyalicyclic structure. 2. Polyimides from bicyclo [2.2. 1] heptane-2-exo-3-exo-5-exo-6-exo-tetracarboxylic 2, 3: 5, 6-dianhydride. Macromolecules. 1993, 26 (18), 4961-4963.
    11. Matsumoto, T.; Kurosaki, T. Soluble and colorless polyimides with polyalicyclic structures [1]. Reactive and Functional Polymers . 1996, 30 (1-3), 55-59.
    12. 松本 , 利彦 ., 脂環式ポリイミド モノマー合成からのアプロチ . 有機合成
    化学協会誌 2000, 58 (8), 776-786.
    13. Kim, Y. S.; Jung, J. C. Synthesis and characterization of polyimides from 9, 10-dialkyloxy-1, 2, 3, 4, 5, 6, 7, 8-octahydro-2, 3, 6, 7-anthracenetetracarboxylic-2, 3: 6, 7-dianhydrides and 4, 4'-oxydianiline. Polymer Bulletin. 2000, 45 (4-5), 311-318.
    14. Kim, Y. S.; Jung, J. C. Synthesis and characterization of polyimides from 9, 10-diphenyl-1, 2, 3, 4, 5, 6, 7, 8-octahydro-2, 3, 6, 7-anthracenetetracarboxylic 2, 3: 6, 7-dianhydride. Polymer Bulletin. 2002, 48 (4-5), 327-335.
    15. Yamada, M.; Kusama, M.; Matsumoto, T.; Kurosaki, T. Synthesis of bicyclo [2.2. 1] heptane-2, 3, 5, 6-tetracarboxylic 2, 3: 5, 6-dianhydrides. The Journal of Organic Chemistry. 1992, 57 (22), 6075-6077.
    16. Kusama, M.; Matsumoto, T.; Kurosaki, T. Soluble Polyimides with Polyalicyclic Structure. 3. Polyimides from (4arH, 8acH)-Decahydro-1t, 4t: 5c, 8c-dimethanonaphthalene-2t, 3t, 6c, 7c-tetracarboxylic 2, 3: 6, 7-Dianhydride. Macromolecules. 1994, 27 (5), 1117-1123.
    17. Matsumoto, T. Nonaromatic polyimides derived from cycloaliphatic monomers. Macromolecules. 1999, 32 (15), 4933-4939.
    18. 木村亮介 ; 松本利彦 . 無色透明 な 耐熱高分子 ―シクロペンタノンビススピ
    ロノルボルナン構造を有する脂環式ポリイミド . 高分子論文集 . 2011, 68 (3), 127-131.
    19. Matsumoto, T.; Ishiguro, E.; Nakagawa, S.; Kimura, R. Alicyclic polyimides derived from alkanone bis-spironorbornanetetracarboxylic dianhydrides. Journal of Photopolymer Science and Technology. 2013, 26 (3), 361-365.
    20. Matsumoto, T.; Maeda,Y.; Takeshima, N. A polyalicyclic polyimide bearing spiro structure. Journal of Photopolymer Science Technology. 2000, 13 (2), 327-332.
    21. Matsumoto, T. Synthesis of Fully Alicyclic Polyimides from 2, 5 (6)-Bis (aminomethyl) bicyclo [2.2. 1] heptane. Journal of Photopolymer Science and Technology. 2001, 14 (5), 695-700.
    22. Oka.T.; Kohama, Y.; Nakagawa, M.; Hisano, N.; Iwamoto, K.; Hiroysu, K.; Katasura, R.; Yasuda, S. Polyimide precursor, polyimide, polyimide film, substrate, and tetracarboxylic acid dianhydride used for producing polyimide. WO/2017/209197, December 07, 2017.
    23. Franz, J. E.; Herber, J. F.; Knowles, W. S. Mechanism of the nitric acid oxidation of olefins. The Journal of Organic Chemistry. 1965, 30 (5), 1488-1491.
    24. Li, J.; Kato, J.; Kudo, K.; Shiraishi, S. Synthesis and properties of novel soluble polyimides having an unsymmetric spiro tricyclic dianhydride unit. Macromolecular Chemistry and Physics. 2000, 201 (17), 2289-2297.
    25. Kato, J.; Seo, A.; Kiso, K.; Kudo, K.; Shiraishi, S. Synthesis of 2, 8-Dioxaspiro [4.5] decane-1, 3, 7, 9-tetrone and the Reactions with Amines. Bulletin of the Chemical Society of Japan. 1999, 72 (5), 1075-1081.
    26. Tate, B. E.; Bavley, A. Stereochemistry of the itaconic acid-cyclopentadiene adduct. Journal of the American Chemical Society. 1957, 79 (24), 6519-6521.
    27. Masaaki, T. Bulletin of the Chemical Society of Japan. A New Route to Mellophanic Dianhydride. 1968, 41 (1), 265-265.
    28. Alder, K.; MÖlls, H. H.; Reeber, R. Darstellung Und Stereochemie Der 1.2. 3.4‐Tetracarbonsäuren Des Cyclopentans Und Cyclohexans. Justus Liebigs Annalen der Chemie. 1958, 611 (1), 7-32.
    29. Fang, X.; Yang, Z.; Zhang, S.; Gao, L.; Ding, M. Synthesis and properties of polyimides derived from cis-and trans-1, 2, 3, 4-cyclohexanetetracarboxylic dianhydrides. Polymer. 2004, 45 (8), 2539-2549.
    30. Haines, A. H. Methods for the Oxidation of Organic Compounds: Alkanes, Alkenes, Alkynes, and Arenes; Academic Press: London, 1985.
    31. Carlsen, P. H.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. A greatly improved procedure for ruthenium tetroxide catalyzed oxidations of organic compounds. The Journal of Organic Chemistry. 1981, 46 (19), 3936-3938.
    32. Shing, T. K.; Tam, E. K. Solvent effect on ruthenium catalyzed dihydroxylation. Tetrahedron letters. 1999, 40 (11), 2179-2180.
    33. Schäfer, H.J. Cleavage of olefinic double bonds by mediated anodic oxidation. Electrochimica acta. 2003, 48 (5), 489-495.
    34. Zimmermann, F.; Meux, E.; Mieloszynski, J.L.; Lecuire, J.M.; Oget, N. Ruthenium catalysed oxidation without CCl4 of oleic acid, other monoenic fatty acids and alkenes. Tetrahedron Letters. 2005, 46 (18), 3201-3203.
    35. Suzuki, H.; Abe, T.; Takaishi, K.; Narita, M.; Hamada, F. New polyimides derived from norbornanetetracarboxylicdianhydride and aromatic diamine showing excellent transparency and heat-resistance. International Journal of the Society of Materials Engineering for Resources. 2000, 8 (1), 9-14.
    36. Cope, A. C.; Moon, S.; Park, C. Proximity Effects. XXVI. Synthesis and Stereochemistry of Bicyclo [5.1. 0] octanols. Journal of the American Chemical Society. 1962, 84 (24), 4843-4849.
    37. Awasthy, A. K.; Rocek, J. Nature of the transition state in the oxidation of olefins by chromium (VI). Journal of the American Chemical Society. 1969, 91 (4), 991-996.
    38. Mosher, W. A.; Steffgen, F. W.; Lansbury, P. T. The Chromic Acid Oxidation of Tetraarylethylenes1. The Journal of Organic Chemistry. 1961, 26 (3), 670-679.
    39. Jarupinthusophon, S.; Thong-In, U.; Chavasiri, W. Catalytic oxidative cleavage of terminal olefins by chromium (III) stearate. Journal of Molecular Catalysis A: Chemical. 2007, 270 (1-2), 289-294.
    40. Grummitt, O.; Egan, R.; Buck, A. Homophthalic Acid and Anhydride: Phenylacetic acid, o‐carboxy‐, and 1, 3‐Isochromandione. Organic Syntheses. 2003, 29, 49-49.
    41. Rylander, P. N. Catalytic hydrogenation over platinum metals, Academic Press: New York and London, 1967.
    42. Rylander, P. N. Catalytic hydrogenation over platinum metals. Elsevier, 2012.
    43. Shiotani, A. Synthese und Charakterisierung von cis-und fraws-Dicyclohexyl-3, 3', 4, 4'-tetracarbonsäuren und ihren Dianhydriden. Zeitschrift für Naturforschung. 2001, 56b, 179-188.
    44. Shiotani, A.; Shimazaki, H.; Matsuo, M. Engineering, Preparation of Transparent Polyimides Derived from cis‐and trans‐Dicyclohexyl‐3, 3’, 4, 4’‐tetracarboxylic Dianhydrides. Macromolecular Materials and Engineering. 2001, 286 (7), 434-441.
    45. Shiotani, A. Darstellung und Strukturelle Charakterisierung von cis-und trans-Dicyclohexyl-3, 3’, 4, 4’-tetracarbonsäure-tetramethylestern/Preparation and Structural Characterization of cis-and trans-Tetramethyl Dicyclohexyl-3, 3’, 4, 4’-tetracarboxylates. Zeitschrift für Naturforschung B. 2001, 56 (2), 189-201.
    46. Hu, X.; Mu, H.; Wang, Y.; Wang, Z.; Yan, J. Colorless polyimides derived from isomeric dicyclohexyl-tetracarboxylic dianhydrides for optoelectronic applications. Polymer. 2018, 134, 8-19.
    47. 田伏岩夫 ; 谷村昇 . 付加環化でえられる脂環テトラカルボン酸類からのポ
    リイミドの生成 . 工業化学雑誌 , 1964, 67 (7), 1084-1086.
    48. Suzuki, H.; Abe, T.; Takaishi, K.; Narita, M.; Hamada, F. The synthesis and X‐ray structure of 1, 2, 3, 4‐cyclobutane tetracarboxylic dianhydride and the preparation of a new type of polyimide showing excellent transparency and heat resistance. Journal of Polymer Science Part A: Polymer Chemistry. 2000, 38 (1), 108-116.
    49. Schenck, G. O.; Hartmann, W.; Mannsfeld, S. P.; Metzner, W.; Krauch, C. H. Vierringsynthesen durch photosensibilisierte symmetrische und gemischte Cyclo‐Additionen. Chemische Berichte. 1962, 95 (7), 1642-1647.
    50. Zhubanov, B. A.; Shpilman, N. Yu.; Almabekov, O. A.; Solomin, V. A.; Kozybaev, K. O. Novel alicyclic dianhydrides and polyheterocycles on their basis. Makromolekulare Chemie. Macromolecular Symposia 1991, 44 (1), 175-183.
    51. Hasegawa, M.; Horiuchi, M.; Kumakura, K.; Koyama, J. Colorless polyimides with low coefficient of thermal expansion derived from alkyl-substituted cyclobutanetetracarboxylic dianhydrides. Polym. Int. 2014, 63 (3), 486-500.
    52. Tapaswi, P. K.; Choi, M. C.; Jung, Y. S.; Cho, H. J.; Seo, D. J.; Ha, C. S. Synthesis and characterization of fully aliphatic polyimides from an aliphatic dianhydride with piperazine spacer for enhanced solubility, transparency, and low dielectric constant. Journal of Polymer Science Part A: Polymer Chemistry. 2014, 52 (16), 2316-2328.
    53. Carruthers, J.; Carruthers, W.; Coldham, I. Modern methods of organic synthesis. 4th ed.; Cambridge University Press: UK, 2004.
    54. Fringuelli, F.; Taticchi, A. Dienes in the Diels-Alder reaction. Wiley: 1990.
    55. James, D. E.; Stille, J. K. The palladium (II) catalyzed olefin carbonylation reaction. Mechanisms and synthetic utility. Journal of the American Chemical Society. 1976, 98 (7), 1810-1823.
    56. James, D. E.; Hines, L. F.; Stille, J.K. The palladium (II) catalyzed olefin carbonylation reaction. The stereochemistry of methoxypalladation. Journal of the American Chemical Society. 1976, 98 (7), 1806-1809.
    57. James, D. E.; Stille, J. K. The palladium (II)-catalyzed olefin carbonylation reaction. IV. Carbon-13 nuclear magnetic resonance analysis of the reaction products. The Journal of Organic Chemistry. 1976, 41 (9), 1504-1511.
    58. 王建淳 . 脂環族二酸 酐與其聚醯亞胺之合成技術開發 . 國立台灣科技大學 , 台北市 , 2017.
    59. Kotha, S.; Rao, N. N.; Ravikumar, O.; Sreevani, G. Isomerization and functionalization of 2: 1 Diels–Alder adducts of cyclopentadiene and p-benzoquinone: Applications to polycycles via ring-closing metathesis and ring-opening metathesis as key steps. Tetrahedron Letters. 2017, 58 (13), 1283-1286.
    60. Carruthers, W.; Coldham, I. Some modern methods of organic synthesis. Cambridge University Press: 1986.
    61. Brown, R.; Bruce, J. M.; Hudson, D. W.; Mills, O. S. Benzoquinones and related compounds. Part I. Crystal and molecular structure of 1, 4, 4a, 5, 8, 8a, 9a, 10a-octahydro-1, 4: 5, 8-dimethano-9, 10-anthraquinone, a Diels–Alder adduct from 1, 4-benzoquinone and cyclopentadiene. Journal of the Chemical Society, Perkin Transactions 2. 1974, (2), 132-135.
    62. Fujishiro, R.; Komata, A.; Koike, T.; Komatsu, S. Method for producing carboxylic anhydride. US20170197948A1, July 13, 2017.
    63. Silverstein, R. M.; Webster, F. X.; Kiemle, D. J.; Bryce, D. L. Spectrometric Identification of Organic Compounds, 8th ed. Wiley: 2014.
    64. Hamed, O.; El-Qisairi, A.; Henry, P. M. Palladium (II)-Catalyzed Oxidation of Aldehydes and Ketones. 1. Carbonylation of Ketones with Carbon Monoxide Catalyzed by Palladium (II) Chloride in Methanol. The Journal of Organic Chemistry. 2001, 66 (1), 180-185.
    65. Chang, A. B.; Lin, T. P.; Thompson, N. B.; Luo, S. X.; Liberman-Martin, A. L.; Chen, H. Y.; Lee, B.; Grubbs, R. H. Design, synthesis, and self-assembly of polymers with tailored graft distributions. Journal of the American Chemical Society. 2017, 139 (48), 17683-17693.
    66. Lin, Z. C.; Chen, C. J. Asymmetric Synthesis of a New Salen Type‐titanium Complex as the Catalyst for Asymmetric Trimethylsilylcyanation of Aldehydes. Journal of the Chinese Chemical Society. 2010, 57 (4A), 726-737.
    67. Menczel, J. D.; Prime, R. B. Thermal analysis of polymers: fundamentals and applications. John Wiley & Sons: 2009.
    68. Matsumoto, T.; Ishiguro, E.; Komatsu, S. Technology, Low temperature film-fabrication of hardly soluble alicyclic polyimides with high Tg by a combined chemical and thermal imidization method. Journal of Photopolymer Science and Technology. 2014, 27 (2), 167-171.
    69. 徐寧霜 . 脂環族二酸酐與聚醯亞胺之合成與表徵 . 國立台灣科技大學 , 台北
    市 , 2019.
    70. Zhuang, Y.; Seong, J. G.; Lee, Y. M. Polyimides containing aliphatic/alicyclic segments in the main chains. Progress in Polymer Science. 2019, 92, 35-88.

    無法下載圖示 全文公開日期 2025/08/26 (校內網路)
    全文公開日期 2035/08/26 (校外網路)
    全文公開日期 2035/08/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE