簡易檢索 / 詳目顯示

研究生: 李文修
Wen-Xiu Li
論文名稱: 不同構型的含酮基脂環族二酸酐單體與其聚醯亞胺高分子的合成
Synthesis and Characterization of Ketone-Containing Alicyclic Dianhydrides with Different Configurations and the Derived Polyimides
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 蕭育生
Yu-Sheng Hsiao
汪昆立
Kun-Li Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 127
中文關鍵詞: 親核取代反應甲氧基羰基化反應脂環族二酸酐脂環族聚醯亞胺
外文關鍵詞: Nucleophilic substitution reaction, methoxycarbonylation, alicyclic dianhydride, alicyclic polyimide
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中成功合成出不同構型的含酮基脂環族二酸酐 (1R,2S,3R,4S,4aR,5S,6R,7S,8R,8aR,9aS,10aS)-tetramethyl-4a,8a,9a,10a-tetramethyl-9,10-dioxotetradecahydro-1,4:5,8-dimethanoanthracene-2,3,6,7-tetracarboxylic dianhydride (CTMDA)、(1R,2S,3R,4S,4aR,5S,6R,7S,8R,8aS,9aS,10aR)-tetramethyl-4a,8a-dimethyl-9,10-dioxotetradecahydro-1,4:5,8-dimethanoanthracene-2,3,6,7-tetracarboxylic dianhydride (CDMDA)與(1R,2S,3R,4S,4aR,5S,6R,7S,8R,8aS,9aS,10aR)-tetramethyl-4a,8a,9a-trimethyl-9,10-dioxotetradecahydro-1,4:5,8-dimethanoanthracene-2,3,6,7-tetracarboxylic dianhydride (CTrMDA)。過程中針對合成路徑中的親核取代反應、甲氧基羰基化反應進行探討,除了將實驗流程最佳化以外,也提出了化合物構型轉變的機制,最後藉由X-ray單晶繞射儀表徵其立體構型。三種不同構型含酮基脂環族二酸酐,分別與芳香族二胺4,4’-oxydianiline (ODA)、2,2’-bis(trifluoromethyl)benzidine (TFMB)、4,4'-diamino-2,2'-dimethylbiphenyl (m-Tol),2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl ether (6FODA)、2-trifluoromethyl-4,4'-diaminodiphenyl ether (3FODA)、2,2-bis [4-(4-aminophenoxy)phenyl] propane (BAPP) 進行一步法縮合聚合反應,大部分組合皆展現高分子量,可以形成具有撓曲性的高分子薄膜,並且無色透明。其中CTMDA所合成的聚醯亞胺,在熱性質與加工性方面較為優異,PI-CTrMDA/ODA的玻璃轉移溫度(Tg)達477 ℃,且5 %熱重損失溫度 (Td5%)達481 ℃,並且在室溫下溶於常見的極性非質子溶劑中m-cresol、GBL、NMP、DMAc;CDMDA、CTrMDA所衍生出的聚醯亞胺則是在單體反應性與熱尺寸安定性上較為突出,其分子量 (Mw) 最高可達369 kDa。


    In this study, we successfully synthesize three novel ketone-containing alicyclic dianhydrides with different configurations (1R,2S,3R,4S,4aR,5S,6R,7S,8R,8aR,9aS,10aS)-tetramethyl-4a,8a,9a,10a-tetramethyl-9,10-dioxotetradecahydro-1,4:5,8-dimethanoanthracene-2,3,6,7-tetracarboxylic dianhydride (CTMDA)、(1R,2S,3R,4S,4aR,5S,6R,7S,8R,8aS,9aS,10aR)-tetramethyl-4a,8a-dimethyl-9,10-dioxotetradecahydro-1,4:5,8-dimethanoanthracene-2,3,6,7-tetracarboxylic dianhydride (CDMDA), and (1R,2S,3R,4S,4aR,5S,6R,7S,8R,8aS,9aS,10aR)-tetramethyl-4a,8a,9a-trimethyl-9,10-dioxotetradecahydro-1,4:5,8-dimethanoanthracene-2,3,6,7-tetracarboxylic dianhydride (CTrMDA)。We optimized the reaction conditions of the nucleophilic substitution reaction and Pd-catalyzed methoxycarbonylation, proposed the mechanism of the configuration change of these compound. Finally, their steric structures were confirmed by X-ray single crystal diffraction. These three different configurations of dianhydrides reacted with 4,4’-oxydianiline (ODA), 2,2’-bis(trifluoromethyl)benzidine (TFMB), 4,4'-diamino-2,2'-dimethylbiphenyl (m-Tol), 2,2'-bis(trifluoromethyl)-4,4'-diaminodiphenyl ether (6FODA), 2-trifluoromethyl-4,4'-diaminodiphenyl ether (3FODA), 2,2-bis [4-(4-aminophenoxy)phenyl] propane (BAPP) by one-step polycondensation to form flexible and colorless polyimides with high molecule weights. The polyimide synthesized by CTMDA exhibited excellent thermal properties and processability. The resulting film has a glass transition temperature (Tg) of 477 ℃, and the 5% thermogravimetric loss temperature (Td5%) of 481 ℃, and it is soluble in common polar aprotic solvents, such as m-cresol, GBL, NMP, DMAc; polyimides derived from CDMDA、CTrMDA has excellent monomer reactivity and thermal dimensional stability, and its molecular weight (Mw) can reach up to 369 kDa.

    摘要 I Abstract II 致謝 III 目錄 IV Figure 索引 VII Scheme 索引 XI Table 索引 XII 第一章 緒論 1 1.1 前言 1 1.2 聚醯亞胺的背景 2 1.3 聚醯亞胺的合成 5 1.4 透明聚醯亞胺 6 1.4.1 傳統全芳香族聚醯亞胺 6 1.4.2 無色芳香族聚醯亞胺 7 1.4.3 引入脂肪/脂環族單體 8 1.4.4 引入多環的脂環族單體 9 1.4.5 脂環族單體立體構型對特性的影響 9 1.5 合成反應與構型變化 10 1.5.1 Cyclopentadiene與p-benzoquinon行反應後構型的轉變 10 1.5.2 甲氧基羰基化反應(Methoxycarbonylation) 14 1.6 研究動機 17 第二章 實驗 18 2.1 實驗藥品 18 2.2 實驗儀器 20 2.3 單體合成 21 2.3.1 化合物3b (1R,4S,4aR,5S,8R,8aR,9aS,10aS)-4a,8a,9a,10a-tetramethyl-1,4,4a,5,8,8a,9a,10a-octahydro-1,4:5,8-dimethanoanthracene-9,10-dione (CTM) 之合成 22 2.3.2 化合物4b (1R,2S,3R,4S,4aR,5S,6R,7S,8R,8aR,9aS,10aS)-tetramethyl 4a,8a,9a,10a-tetramethyl-9,10-dioxotetradecahydro-1,4:5,8-dimethanoanthracene-2,3,6,7-tetracarboxylate (CTMTE) 之合成 23 2.3.3 化合物3c (1R,4S,4aR,5S,8R,8aS,9aS,10aR)-4a,8a-dimethyl-1,4,4a,5,8,8a,9a,10a-octahydro-1,4:5,8-dimethanoanthracene-9,10-dione (CDM)之合成 24 2.3.4 化合物4c (1R,2S,3R,4S,4aR,5S,6R,7S,8R,8aS,9aS,10aR)-tetramethyl-4a,8a-dimethyl-9,10-dioxotetradecahydro-1,4:5,8-dimethanoanthracene-2,3,6,7-tetracarboxylate (CDMTE)之合成 25 2.3.5 化合物5c (1R,2S,3R,4S,4aR,5S,6R,7S,8R,8aS,9aS,10aR)-tetramethyl-4a,8a-dimethyl-9,10-dioxotetradecahydro-1,4:5,8-dimethanoanthracene-2,3,6,7-tetracarboxylic dianhydride (CDMDA)之合成 26 2.3.6 化合物3e (1R,4S,4aR,5S,8R,8aS,9aS,10aR)-4a,8a,10a-trimethyl-1,4,4a,5,8,8a,9a,10a-octahydro-1,4:5,8-dimethanoanthracene-9,10-dione (CTrM)之合成 27 2.3.7 化合物4e (1R,2S,3R,4S,4aR,5S,6R,7S,8R,8aS,9aS,10aR)-tetramethyl-4a,8a,9a-trimethyl-9,10-dioxotetradecahydro-1,4:5,8-dimethanoanthracene-2,3,6,7-tetracarboxylate (CTrMTE)之合成 28 2.3.8 化合物5e (1R,2S,3R,4S,4aR,5S,6R,7S,8R,8aS,9aS,10aR)-tetramethyl-4a,8a,9a-trimethyl-9,10-dioxotetradecahydro-1,4:5,8-dimethanoanthracene-2,3,6,7-tetracarboxylic dianhydride (CTrMDA)之合成 29 2.4 高分子合成 31 2.5 高分子薄膜製備 33 第三章 結果與討論 34 3.1單體的合成與表徵 34 3.1.1化合物3b exo-syn-endo (CTM)結構鑑定 35 3.1.2化合物 3c endo-anti-endo (CDM)結構鑑定 37 3.1.3 化合物 3e endo-anti-endo (CTrM)結構鑑定 39 3.1.4 化合物3f endo-anti-endo (CTMnn)結構鑑定 44 3.1.5 化合物 3b (CTM)與化合物 3c (CDM)實驗優化 47 3.1.6化合物4b exo-exo-syn-endo-exo (CTMTE)結構鑑定 62 3.1.7 化合物4c exo-endo-anti-endo-exo (CDMTE)結構鑑定 63 3.1.8 化合物4e exo-endo-anti-endo-exo (CTrMTE)結構鑑定 66 3.1.9 Methoxycarbonylation實驗優化 69 3.1.10 化合物5c exo-endo-anti-endo-exo (CDMDA) 合成與結構鑑定 85 3.1.11 化合物5e exo-endo-anti-endo-exo (CTrMDA) 合成與結構鑑定 89 3.1.12 二酸酐單體的合成與純化 93 3.2 高分子的合成與鑑定 96 3.3 高分子的分子量與溶解度 106 3.4 高分子的熱性質 111 3.5 高分子的機械性質 116 3.6 高分子的光學性質 117 第四章 結論 121 參考文獻 122

    1. Ahn, C.; Kim, T. Y.; Hong, P. H.; Choi, S.; Lee, Y. J.; Kwon, H.; Jeon, H.; Ko, D. W.; Park, I.; Han, H., Highly transparent, Colorless Optical Film with Outstanding Mechanical Strength and Folding Reliability Using Mismatched Charge‐Transfer Complex Intensification. Advanced Functional Materials 2022, 32, 2111040.
    2. Tapaswi, P. K.; Ha, C. S., Recent trends on transparent colorless polyimides with balanced thermal and optical properties: Design and synthesis. Macromolecular Chemistry and Physics 2019, 220, 1800313.
    3. Yan, X.; Dai, F.; Ke, Z.; Yan, K.; Chen, C.; Qian, G.; Li, H., Synthesis of colorless polyimides with high Tg from asymmetric twisted benzimidazole diamines. European Polymer Journal 2022, 164, 110975.
    4. Liu, Y. Y.; Wang, Y. K.; Wu, D. Y., Synthetic strategies for highly transparent and colorless polyimide film. Journal of Applied Polymer Science 2022, 139, e52604.
    5. Xia, X.; He, X.; Zhang, S.; Zheng, F.; Lu, Q., Short-side-chain regulation of colorless and transparent polyamide-imides for flexible transparent displays. European Polymer Journal 2023, 191, 112030.
    6. Yang, Z.; Guo, H.; Kang, C.; Gao, L., Synthesis and characterization of amide-bridged colorless polyimide films with low CTE and high optical performance for flexible OLED displays. Polymer Chemistry 2021, 12, 5364-5376.
    7. Yi, C.; Li, W.; Shi, S.; He, K.; Ma, P.; Chen, M.; Yang, C., High-temperature-resistant and colorless polyimide: Preparations, properties, and applications. Solar Energy 2020, 195, 340-354.
    8. Yang, S.-Y.; Yuan, L.-L., Advanced polyimide films. In Advanced Polyimide Materials, Elsevier: 2018; pp 1-66.
    9. 王建淳. 脂環族二酸酐與其聚醯亞胺之合成技術開發. 國立臺灣科技大學, 台北市, 2017.
    10. 李祥榕. 新型含酮基脂環族二酸酐及其聚醯亞胺之合成. 國立臺灣科技大學, 台北市, 2020.
    11. 李岳翰. 新型含甲基醚側基的脂環族二酸酐及其聚醯亞胺之合成. 國立臺灣科技大學, 台北市, 2022.
    12. Bogert, M. T.; Renshaw, R. R., 4-Amino-o-phthalic acid and some of its derivatives. Journal of the American Chemical Society 1908, 30, 1135-1144.
    13. Edwards, W. M.; Maxwell, R. I., Polyimides of pyromellitic acid. U.S. Patent 2,710,853A, 1955.
    14. Sroog, C., Polyimides. Journal of Polymer Science: Macromolecular Reviews 1976, 11, 161-208.
    15. Sroog, C.; Endrey, A.; Abramo, S. V.; Berr, C.; Edwards, W.; Olivier, K., Aromatic polypyromellitimides from aromatic polyamic acids. Journal of Polymer Science Part A: General Papers 1965, 3, 1373-1390.
    16. Gross, P. M., Market pull/technology push: GE's Ultem resin. Research Technology Management 1989, 32, 30.
    17. Loncrini, D.; Witzel, J., Polyaryleneimides of meso‐and dl‐1,2,3,4‐butanetetracarboxylic acid dianhydrides. Journal of Polymer Science Part A: Polymer Chemistry 1969, 7, 2185-2193.
    18. Lee, L. T.; Pearce, E. M.; Hirsch, S. S., Novel aliphatic polymers containing imide ring. I. Polyspiroimide based on methanetetraacetic acid. Journal of Polymer Science Part A‐1: Polymer Chemistry 1971, 9, 3169-3174.
    19. Vinogradova, S.; Vygodskii, Y. S.; Korshak, V., Some features of the synthesis of polyimides by single-stage high-temperature polycyclization. Polymer Science USSR 1970, 12, 2254-2262.
    20. Colorless polyimide films market research report by application, end-use industry, region - cumulative impact of COVID-19, Russia Ukraine conflict, and high inflation - global forecast 2023-2030. 360iResearch 2023, 224.
    21. Zhuang, Y.; Seong, J. G.; Lee, Y. M., Polyimides containing aliphatic/alicyclic segments in the main chains. Progress in Polymer Science 2019, 92, 35-88.
    22. Sun, L.; Zhang, D.; Cheng, S. Z.; Harris, F. W., Thermally stable transparent polymer films for flexible electronics: Properties and applications. Giant 2023, 14, 100156.
    23. Matsumoto, T., Alicyclic polyimides an approach from monomer synthesis. Journal of Synthetic Organic Chemistry, Japan 2000, 58, 776-786.
    24. Ando, S.; Matsuura, T.; Sasaki, S., Coloration of aromatic polyimides and electronic properties of their source materials. Polymer Journal 1997, 29, 69-76.
    25. Hasegawa, M.; Horie, K., Photophysics, photochemistry, and optical properties of polyimides. Progress in Polymer Science 2001, 26, 259-335.
    26. Li, F.; Fang, S.; Chen, J.-C., Diamine architecture effects on glass transitions, relaxation processes and other material properties in organo-soluble aromatic polyimide films. Polymer 1999, 40, 4571-4583.
    27. Li, F.; Jason, J. G.; Honigfort, P. S.; Fang, S.; Chen, J.-C.; Harris, F. W.; Cheng, S. Z., Dianhydride architectural effects on the relaxation behaviors and thermal and optical properties of organo-soluble aromatic polyimide films. Polymer 1999, 40, 4987-5002.
    28. Matsumoto, T., Nonaromatic polyimides derived from cycloaliphatic monomers. Macromolecules 1999, 32, 4933-4939.
    29. Yamada, M.; Kusama, M.; Matsumoto, T.; Kurosaki, T., Soluble polyimides with polyalicyclic structure. 2. Polyimides from bicyclo[2.2.1]heptane-2-exo-3-exo-5-exo-6-exo-tetracarboxylic 2,3:5,6-dianhydride. Macromolecules 1993, 26, 4961-4963.
    30. Kusama, M.; Matsumoto, T.; Kurosaki, T., Soluble polyimides with polyalicyclic structure. 3. Polyimides from (4arH,8acH)-Decahydro-1t,4t:5c,8c-dimethanonaphthalene-2t,3t,6c,7c-tetracarboxylic 2,3:6,7-Dianhydride. Macromolecules 1994, 27, 1117-1123.
    31. Yamada, M.; Kusama, M.; Matsumoto, T.; Kurosaki, T., Synthesis of bicyclo[2.2. 1] heptane-2,3,5,6-tetracarboxylic 2,3:5,6-dianhydrides. The Journal of Organic Chemistry 1992, 57, 6075-6077.
    32. Matsumoto, T.; Maeda, Y.; Takeshima, N., A polyalicyclic polyimide bearing spiro structure. Journal of Photopolymer Science and Technology 2000, 13, 327-332.
    33. Matsuura, T.; Hasuda, Y.; Nishi, S.; Yamada, N., Polyimide derived from 2,2'-bis (trifluoromethyl)-4,4'-diaminobiphenyl. Synthesis and characterization of polyimides prepared with 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride or pyromellitic dianhydride. Macromolecules 1991, 24 , 5001-5005.
    34. Matsumoto, T.; Kurosaki, T., Soluble and colorless polyimides from bicyclo[2.2. 2]octane-2,3,5,6-tetracarboxylic 2,3:5,6-dianhydrides. Macromolecules 1997, 30, 993-1000.
    35. Hasegawa, M.; Sato, H.; Hoshino, K.; Arao, Y.; Ishii, J., Colorless polyimides derived from octahydro-2,3,6,7-anthracenetetracarboxylic dianhydride. Macromol 2023, 3, 175-199.
    36. Hasegawa, M.; Ichikawa, K.; Takahashi, S.; Ishii, J., Solution-processable colorless polyimides derived from hydrogenated pyromellitic dianhydride: strategies to reduce the coefficients of thermal expansion by Maximizing the spontaneous chain orientation behavior during solution casting. Polymers 2022, 14, 1131.
    37. Hasegawa, M.; Horiuchi, M.; Kumakura, K.; Koyama, J., Colorless polyimides with low coefficient of thermal expansion derived from alkyl‐substituted cyclobutanetetracarboxylic dianhydrides. Polymer international 2014, 63, 486-500.
    38. Hasegawa, M.; Hirano, D.; Fujii, M.; Haga, M.; Takezawa, E.; Yamaguchi, S.; Ishikawa, A.; Kagayama, T., Solution‐processable colorless polyimides derived from hydrogenated pyromellitic dianhydride with controlled steric structure. Journal of Polymer Science Part A: Polymer Chemistry 2013, 51, 575-592.
    39. Hasegawa, M.; Fujii, M.; Ishii, J.; Yamaguchi, S.; Takezawa, E.; Kagayama, T.; Ishikawa, A., Colorless polyimides derived from 1S,2S,4R,5R-cyclohexanetetracarboxylic dianhydride, self-orientation behavior during solution casting, and their optoelectronic applications. Polymer 2014, 55, 4693-4708.
    40. Albrecht, W., Additionsproducte von Cyklopentadiën und Chinonen. Justus Liebigs Annalen der Chemie 1906, 348, 31-49.
    41. Diels, O.; Alder, K., Synthesen in der hydroaromatischen Reihe. Justus Liebigs Annalen der Chemie 1928, 460, 98-122.
    42. Yates, P.; Switlak, K., The 1:1 and 2:1 adducts of cyclopentadiene with p-benzoquinone. Canadian journal of chemistry 1990, 68, 1894-1900.
    43. Kotha, S.; Rao, N. N.; Ravikumar, O.; Sreevani, G., Isomerization and functionalization of 2:1 Diels–Alder adducts of cyclopentadiene and p-benzoquinone: applications to polycycles via ring-closing metathesis and ring-opening metathesis as key steps. Tetrahedron Letters 2017, 58, 1283-1286.
    44. Cookson, R.; Hill, R.; Hudec, J., 585. The stereochemistry of the adducts of p-benzoquinone with two molecules of cyclopentadiene. Charge-transfer from olefinic double bonds to p-benzoquinone and ene-1,4-dione groups. Journal of the Chemical Society 1964, 3043-3062.
    45. Stoermer, M. J.; Wickramasinghe, W. A.; Byriel, K. A.; Hockless, D. C.; Skelton, B. W.; Sobolev, A. N.; White, A. H.; Mak, J. Y.; Fairlie, D. P., Stereoelectronic effects on dienophile separation influence the Diels–Alder synthesis of molecular clefts. European Journal of Organic Chemistry 2017, 2017, 6793-6796.
    46. Kotha, S.; Ravikumar, O., Design and synthesis of fused polycycles via Diels–Alder reaction and ring-rearrangement metathesis as key steps. Beilstein Journal of Organic Chemistry 2015, 11, 1259-1264.
    47. James, D.; Stille, J., The palladium (II) catalyzed olefin carbonylation reaction. Mechanisms and synthetic utility. Journal of the American Chemical Society 1976, 98 , 1810-1823.
    48. Choi, K. I.; Vannice, M. A., CO oxidation over Pd and Cu catalysts IV. Prereduced Al2O3-supported copper. Journal of Catalysis 1991, 131, 22-35.
    49. Rinderknecht, H., Some observations on the alkylation of diphenylacetophenone and diphenylacetone. Journal of the American Chemical Society 1951, 73, 5770-5773.
    50. Binkley, E. S.; Heathcock, C. H., Regiospecific alkylation of enolate ions in liquid ammonia-tetrahydrofuran. The Journal of Organic Chemistry 1975, 40, 2156-2160.
    51. Thompson, G. S.; Hirsch, J. A., Ambident reactivity of medium-ring cycloalkane-1,3-dione enolates. The Journal of Organic Chemistry 1998, 63, 1098-1101.
    52. Benkhoff, J.; Boese, R.; Klärner, F.-G.; Wigger, A. E., Synthesis of sterically rigid macrocycles by the use of pressure-induced repetitive Diels-Alder reactions. Tetrahedron letters 1994, 35, 73-76.
    53. Hamed, O.; El-Qisairi, A.; Henry, P. M., Palladium (II)-catalyzed oxidation of aldehydes and ketones. Carbonylation of ketones with carbon monoxide catalyzed by palladium (II) chloride in methanol. The Journal of Organic Chemistry 2001, 66, 180-185.
    54. Matsumoto, T.; Ishiguro, E.; Nakagawa, S.; Kimura, R., Alicyclic polyimides derived from alkanone bis-spironorbornanetetracarboxylic dianhydrides. Journal of Photopolymer Science and Technology 2013, 26, 361-365.
    55. Fujishiro, R.; Komata, A.; Koike, T.; Komatsu, S., Method for producing carboxylic anhydride. U.S. Patent 20170197948A1, 2017.
    56. 徐寧霜. 脂環族二酸酐與聚醯亞胺之合成與表徵. 國立臺灣科技大學, 台北市, 2019.
    57. Ozawa, H.; Ishiguro, E.; Kyoya, Y.; Kikuchi, Y.; Matsumoto, T., Colorless polyimides derived from an alicyclic tetracarboxylic dianhydride, CpODA. polymers 2021, 13, 2824.
    58. Hasegawa, M.; Watanabe, Y.; Tsukuda, S.; Ishii, J., Solution‐processable colorless polyimides with ultralow coefficients of thermal expansion for optoelectronic applications. Polymer International 2016, 65, 1063-1073.
    59. Hasegawa, M.; Fujii, M.; Wada, Y., Approaches to improve the film ductility of colorless cycloaliphatic polyimides. Polymers for Advanced Technologies 2018, 29, 921-933.
    60. Choi, I. H.; Chang, J. H., Colorless polyimide nanocomposite films containing hexafluoroisopropylidene group. Polymers for Advanced Technologies 2011, 22, 682-689.
    61. Xu, W.; Ma, X.; Su, Y.; Song, Y.; Shang, M.; Lu, X.; Lu, Q., Synthesis of highly transparent and thermally stable copolyimide with fluorine‐containing dianhydride and alicyclic dianhydride. Journal of Applied Polymer Science 2020, 137, 48603.
    62. Lian, R.; Lei, X.; Xiao, Y.; Xue, S.; Xiong, G.; Zhang, Z.; Yan, D.; Zhang, Q., Synthesis and properties of colorless copolyimides derived from 4,4′-diaminodiphenyl ether-based diamines with different substituents. Polymer Chemistry 2021, 12, 4803-4811.

    無法下載圖示 全文公開日期 2028/08/22 (校內網路)
    全文公開日期 2028/08/22 (校外網路)
    全文公開日期 2028/08/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE