簡易檢索 / 詳目顯示

研究生: 鄭宗泰
Tsung-Tai Cheng
論文名稱: 微型永磁同步電動機驅動系統性能改善的研究
Research on Performance Improvement of Micro-Permanent Magnet Synchronous Motor Drive Systems
指導教授: 劉添華
Tian-Hua ,Liu
口試委員: 廖聰明
Chang-Ming ,Liaw,
許源浴
Yuan-Yih ,Hsu,
劉昌煥
Chang-Huan ,Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 107
中文關鍵詞: 微型永磁同步電動機狀態估測器轉軸角/速度估測器數位訊號處理器
外文關鍵詞: micro-permanent magnet synchronous motor, state estimator, rotor position/speed estimator, digital signal processor
相關次數: 點閱:312下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究微型永磁同步電動機驅動系統性能的改善,主要探討狀態估測器設計及其轉軸角/速度估測器的研製。文中,首先針對編碼器解析度不足的問題,藉由狀態估測器的設計,以改善低速控制性能。其次,提出一個新型的轉軸角/速度估測器,藉由偵測電流零點訊號,可估測出轉軸角度及速度。該轉軸角/速度估測器主要係由零點電流偵測及角度補償器組合而成。此外,當電動機操作在低轉速下,電流偵測不易,經由調整定子電流大小,可有效改善轉軸角/速度估測器的低速性能。
    文中所研製之系統以數位訊號處理器TMS320F28335為控制核心,分別執行狀態估測器及轉軸角/速度估測的運算,實測結果與理論相符合,說明本文提出之微型永磁同步電動機閉迴控速系統的正確性及可行性。


    This thesis investigates performance improvement of micro-permanent magnet synchronous motor drive systems. Two estimators, which include a state estimator and a rotor position/speed estimator, are proposed. First, the state estimator has been designed to improve the low speed performance of a micro permanent magnet synchronous motor drive system due to its low resolution encoder. Next, a novel position/speed estimator has been designed, which can obtain the position/speed by detecting the zero-current crossing signals. The position/speed estimator combines a zero-current signal processor and a phase angle compensator. In addition, by adjusting the stator current, the low speed performance of the position/speed estimator can be effectively improved.
    A digital signal processor, TMS320F28335, is used as a control unit to execute the state estimating algorithm and the rotor position/speed estimating algorithm. Experimental results validate the theoretical analysis and show the correctness and feasibility of this thesis.

    中文摘要I 英文摘要II 目錄III 圖目錄VI 表目錄X 符號索引XI 第一章 緒論1 1.1 研究動機1 1.2 文獻回顧2 1.3 目的4 1.4 大綱5 第二章 微型永磁同步電動機6 2.1 簡介6 2.2 結構及特性7 2.3 微型永磁同步電動機應用11 2.4 數學模式13 第三章 驅動系統介紹20 3.1 簡介20 3.2 功率級電路21 3.3 轉矩控制23 3.4 四象限控制26 第四章 狀態估測器設計28 4.1 簡介28 4.2 狀態估測器設計原理29 4.3 閉迴控速系統設計33 第五章 轉軸角度估測器設計39 5.1 簡介39 5.2 轉軸角度估測原理41 5.2.1 電流零點偵測41 5.2.2 同步旋轉座標軸補償原理43 5.2.3 閉迴控速系統48 5.3 靜止狀態啟動方法49 5.4 低轉速操作原理52 第六章 系統研製53 6.1 簡介53 6.2 硬體電路製作54 6.2.1 驅動級電路54 6.2.2 電流回授及偵測電路56 6.3 軟體程式設計58 6.3.1 數位訊號處理器架構60 6.3.2 方法一程式設計65 6.3.3 方法二程式設計70 第七章 實測74 7.1 簡介74 7.2 實測結果75 第八章 結論與建議99 參考文獻100 作者簡介107

    [1]A. B. Frazier, R. O. Warrington, and C. Friedrich, “The miniaturization technologies: past, present, and future,” IEEE Transactions on Industrial Electronics, vol. 42, no. 5, pp. 423-430, 1995.
    [2]H. Fujita, “Microactuators and micromachines,” Proceedings of the IEEE, vol. 86, no. 8, pp. 1721-1732, 1998.
    [3]P. L. Chapman and P. T. Krein, “Smaller is better? [micromotors and electric drives],” IEEE Transactions on Industry Applications Magazine, vol. 9, no. 1, pp. 62-67, 2003.
    [4]M. Mehregany, S. D. Senturia, J. H. Lang, and P. Nagarkar, “Micromotor fabrication,” IEEE Transactions on Electron Devices, vol. 39, no. 9, pp. 2060-2069, 1992.
    [5]D. J. Sadler, T. M. Liakapoulos, and C. H. Ahn, “A universal electromagnetic microactuator using magnetic interconnection concepts,” Journal of Microelectromechanical Systems, vol. 9, no. 4, pp. 460-468, 2000.
    [6]A. C. Aguero, F. A. Actis, V. C. Silva, J. R. Cardoso, and S. I. Nabeta, “Finite element analysis of a synchronous permanent magnet micromotor through axisymmetric and transverse planar simulations,” IEEE Transactions on Magnetics, vol. 34, no. 5, pp. 3604-3607, 1998.
    [7]M. Feldmann and S. Buttgenbach, “Linear variable reluctance (VR) micro motors with compensated attraction force: concept, simulation, fabrication and test,” IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2567-2569, 2007.
    [8]T. C. Neugebauer, D. J. Perreault, J. H. Lang, and C. Livermore, “A six-phase multilevel inverter for MEMS electrostatic induction micromotors,” IEEE Transactions on Circuits and Systems, vol. 51, no. 2, pp. 49-56, 2004.
    [9]J. Scott, J. McLeish, and W. H. Round, “Speed control with low armature loss for very small sensorless brushed DC motors,” IEEE Transactions on Industrial Electronics, vol. 56, no. 4, pp. 1223-1229, 2009.
    [10]Y. H. Chang, T. H. Liu, and C. C. Wu, “Novel adjustable micropermanent-magnet synchronous-motor control system without using a rotor-position/speed sensor,” IEE Proceedings Electric Power Applications, vol. 153, no. 3, pp. 429-438, 2006.
    [11]Y. H. Chang, T. H. Liu, and C. C. Wu, “Design and implementation of an H1 controller for a micropermanent-magnet synchronous motor position control system,” IET Electric Power Applications, vol. 2, no. 1, pp. 8-18, 2008.
    [12]B. Wagner, M. Kreutzer, and W. Benecke, “Permanent magnet micromotors on silicon substrates,” Journal of Microelectromecha-
    nical Systems, vol. 2, no. 3, pp. 23-29, 1993.
    [13]V. Fernandez, G. Reyne, O. Cugat, P. A. Gilles, and J. Delamare, “Design and modelling of permanent magnet micro-bearings,” IEEE Transactions on Magnetics, vol. 34, no. 5, pp. 3596-3599, 1998.
    [14]P. A. Gilles, J. Delamare, O. Cugat, and J. L. Schanen, “Design of a permanent magnet planar synchronous micromotor,” IEEE IAS-2000, pp. 223-227, Oct. 2000.
    [15]H. C. Chau, B. Chao, X. P. Li, and T. S. Low, “Investigation of core loss in PM micro-motor made using MIM technology,” IEEE Transactions on Magnetics, vol. 36, no. 5, pp. 3652-3654, 2000.
    [16]K. Komori and T. Yamane, “Magnetically levitated micro PM motors by two types of active magnetic bearings,” IEEE/ASME Transactions on Mechatronics, vol. 6, no. 1, pp. 43-49, 2001.
    [17]C. Jie-Yu, Z. Jian-Bin, M. Guang, and Z. Wen-Ming, “Evaluation of eddy-current effects on diamagnetic bearings for microsystems,” IEEE Transactions on Industrial Electronics, vol. 56, no. 4, pp. 964-972, 2009.
    [18]D. H. Lee and J. W. Ahn, “A current ripple reduction of a high-speed miniature brushless direct current motor using instantaneous voltage control,” IET Electric Power Applications, vol. 3, no. 2, pp. 85-92, 2009.
    [19]M. A. Jabbar, “Disk drive spindle motors and their controls,” IEEE Transactions on Industrial Electronics, vol. 43, no. 2, pp. 276-284, 1996.
    [20]K. Wiedmann, S. Demmig, and A. Mertens, “Modified sliding mode controller for positioning of micro linear motors,” European Conference on Power Electronics and Applications, pp. 1-10,2007.
    [21]J. Zhang and M. Schroff, “High-performance micromotor control systems,” IEEE IECON-2003, pp. 347-352, Nov. 2003.
    [22]A. E. Glazounov, S. Wang, Q. M. Zhang, and C. Kim, “Piezoelectric stepper motor with direct coupling mechanism to achieve high efficiency and precise control of motion,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 47, no. 4, pp. 1059-1067, 2000.
    [23]J. Friend, K. Nakamura, and S. Ueha, “A piezoelectric micromotor using in-plane shearing of PZT elements,” IEEE/ASME Transactions on Mechatronics, vol. 9, no. 3, pp. 467-473, 2004.
    [24]D. Shuxiang, S. P. Lim, K. H. Lee, Z. Jingdong, L. C. Lim, and K. Uchino, “Piezoelectric ultrasonic micromotor with 1.5 mm diameter,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 50, no. 4, pp. 361-367, 2003.
    [25]M. M. Bech, J. K. Pedersen, and F. Blaabjerg, “Field-oriented control of an induction motor using random pulsewidth modulation,” IEEE Transactions on Industry Applications, vol. 37, no. 6, pp. 1777-1785, 2001.
    [26]K. Heui-Wook and S. Seung-Ki, “A new motor speed estimator using Kalman filter in low-speed range,” IEEE Transactions on Industrial Electronics, vol. 43, no. 4, pp. 498-504, 1996.
    [27]K. Taeg-Joon and H. Dong-Seok, “High-performance speed control of electric machine using low-precision shaft encoder,” IEEE Trans-
    actions on Power Electronics, vol. 14, no. 5, pp. 838-849, 1999.
    [28]K. Nam-Joon, M. Hee-Sung, and H. Dong-Seok, “Inertia identification for the speed observer of the low speed control of induction machines,” IEEE Transactions on Industry Applications, vol. 32, no. 6, pp. 1371-1379, 1996.
    [29]L. Kyo-Beum and F. Blaabjerg, “Robust and stable disturbance observer of servo system for low-speed operation,” IEEE Trans-
    actions on Industry Applications, vol. 43, no. 3, pp. 627-635, 2007.
    [30]Maxon motor catalog, Maxon 2006/07, Apr. 2006, http://www.max-
    onmotor.com/.
    [31]Y. N. Zhilichev, “Calculation of 3D magnetic field of disk-type micromotors by integral transformation method,” IEEE Transactions on Magnetics, vol. 32, no. 1, pp. 248-253, 1996.
    [32]B. K. Bose, “Technology trends in microcomputer control of electrical machines,” IEEE Transactions on Industry Electronics, vol. 35, no. 1, pp. 160-177, Feb. 1988.
    [33]H. Jin, R. Se-Hyun, J. In-Soung, S. Ha-Gyeong, and K. Byung-Il, “Three-dimensional characteristic analysis of micro BLDC motor according to slotless winding shape,” IEEE Transactions on Magnetics, vol. 39, no. 5, pp. 2989-2991, 2003.
    [34]O. Masaru, “Stator winding and manufacturing method therefor,” United State Patent, US 6,791,224,2004.
    [35]T. G. Wiegele, “Micro-turbo-generator design and fabrication: a preliminary study,” IEEE IECEC-1996, pp. 2308-2313, Aug. 1996.
    [36]A. Azzam Yasseen, S. W. Smith, F. L. Merat, and M. Mehregany, “Diffraction grating scanners using polysilicon micromotors,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, no. 5, pp. 75-82, 1999.
    [37]K. Suzumori, T. Miyagawa, M. Kimura, and Y. Hasegawa, “Micro inspection robot for 1-in pipes,” IEEE/ASME Transactions on Mechatronics, vol. 4, no. 3, pp. 286-292, 1999.
    [38]R. J. Wood, “The first takeoff of a biologically inspired at-scale robotic insect,” IEEE Transactions on Robotics, vol. 24, no. 2, pp. 341-347, 2008.
    [39]R. Yokokawa, S. Takeuchi, T. Kon, M. Nishiura, R. Ohkura, M. Edamatsu, K. Sutoh, and H. Fujita, “Hybrid nanotransport system by biomolecular linear motors,” Journal of Microelectromechanical Systems, vol. 13, no. 4, pp. 612-619, 2004.
    [40]B. Watson, J. Friend, and L. Yeo, “Micromotor of less than 1 mm^3 volume for in vivo medical procedures,” IEEE-ICQNM-2009, pp. 81-85, 2009.
    [41]M. Sendoh, K. Ishiyama, and K. I. Arai, “Fabrication of magnetic actuator for use in a capsule endoscope,” IEEE Transactions on Magnetics, vol. 39, no. 5, pp. 3232-3234, 2003.
    [42]K. Byungkyu, L. Sunghak, P. Jong Heong, and P. Jong-Oh, “Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs),” IEEE/ASME Transactions on Mechatronics, vol. 10, no. 1, pp. 77-86, 2005.
    [43]V. R. C. Kode and M. C. Cavusoglu, “Design and characterization of a novel hybrid actuator using shape memory alloy and DC micromotor for minimally invasive surgery applications,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 4, pp. 455-464, 2007.
    [44]T. Sebastian, G. Slemon, and M. Rahman, “Modelling of permanent magent synchronous motors,” IEEE Transactions on Magnetics, vol. 22, no. 5, pp. 1069-1071, Sep. 1986.
    [45]P. Pillay and R. Krishnan, “Modeling, simulation, and analysis of permanent-magnet motor drives. I. The permanent-magnet synchronous motor drive,” IEEE Transactions on Industry Applications, vol. 25, no. 2, pp. 265-273. Mar. / Apr. 1989.
    [46]G. Jang and M. G. Kim, “A bipolar-starting and unipolar-running method to drive a hard disk drive spindle motor at high speed with large starting torque,” IEEE Transactions on Magnetics, vol. 41, no. 2, pp. 750-755, Feb. 2005.
    [47]N. Bennett, J. Wang, D.W. Shimmin, and K. J. Binns, “A new vector control scheme for an adjustable speed AC drive system utilising a high field permanent magnet synchronous machine,” IEEE IEMDC-1993, pp. 121-126, Sep. 1993.
    [48]W. Leonhard, “Field-orientation for controlling AC machines-principle and application,” Conference Record in Power Electronics and Variable-Speed Drives, pp. 277-282, July 1988.
    [49]C. K. Lin, T. H. Liu, and C. H. Lo, “Sensorless interior permanent magnet synchronous motor drive system with a wide adjustable speed range,” IET Electric Power Applications, vol. 3, no. 2, pp. 133-146, 2009.
    [50]N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Transactions on Industrial Electronics, vol. 43, no. 2, pp. 300-308, 1996.
    [51]L. Ju-Suk, T. Takeshita, and N. Matsui, “Stator-flux-oriented sensorless induction motor drive for optimum low-speed performance,” IEEE Transactions on Industry Applications, vol. 33, no. 5, pp. 1170-1176, 1997.
    [52]R. Mizutani, T. Takeshita, and N. Matsui, “Current model-based sensorless drives of salient-pole PMSM at low speed and standstill,” IEEE Transactions on Industry Applications, vol. 34, no. 4, pp. 841-846, 1998.
    [53]Texas Instruments, TMS320x2833x System Control and Interrupts Reference Guide, 2007, http://focus.ti.com/.

    QR CODE