簡易檢索 / 詳目顯示

研究生: 涂千芳
Qian-Fang Tu
論文名稱: 以螞蟻演算法求解作業排程於TFT-LCD陣列廠
Operation Scheduling in TFT-LCD Array Fab Using Ant Colony Optimization
指導教授: 林希偉
Shi-Woei Lin
陳建良
James C. Chen
口試委員: 陳子立
Tzu-Li Chen
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 58
中文關鍵詞: 薄膜液晶顯示器陣列產能規劃螞蟻演算法實驗設計
外文關鍵詞: TFT-LCD, Array, Capacity Planning, Ant Colony Optimization, Experimental Design
相關次數: 點閱:408下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展ㄧ產能規劃系統應用於TFT-LCD Array廠,該研究運用螞蟻演算法(Ant Colony Optimization, ACO)於訂單排程,並考慮訂單交期和批量大小以及廠區的產能負荷。此產能規劃系統包含五個模組(1)訂單優先序模組(Order Priority Module, OPM);(2)在製品指派模組 (WIP-Pulling Module, WPM);(3)批量投料模組(Lot Release Module, LRM);(4)產能堆疊模組(Workload Accumulation Module, WAM);(5)產能平衡模組(Workload Balance Module, WBM)。產能規劃系統可以用來估計規劃期間內的訂單延遲情況、機台負荷以及整備時間。本研究並利用基因演算法(Genetic Algorithm, GA)及關鍵比率法(Critical Ratio,CR)與 ACO進行比較。本研究使用Microsoft Visual Basic發展產能規劃系統,以模擬與實驗設計來衡量其績效指標。研究結果顯示運用螞蟻演算法進行訂單排程能有效地降低整備時間。


    A capacity planning system (CPS) using ant colony optimization (ACO) is developed in TFT-LCD array fab in order to produce the order dispatching decision by considering due date and size of orders, as well as the capacity, loading, and yield of fab. This CPS includes five moduals: (1) Order Priority Module, OPM;(2) WIP-Pulling Module,WPM;(3)Lot Release Module, LRM;(4) Workload Accumulation Module, WAM;(5) Workload Balance Module, WBM. CPS can evaluate the lateness, machine workload balance, and total setup time on the planning horizon. This research use Genetic Algorithm (GA) and Critical Ratio (CR) as the comparison methods. Microsoft Visual Basic is used to develop CPS, simulation and experimental design is used to evaluate its performance. The result shows that ACO can effectively and efficiently eliminate the total setup time.

    Abstract (in Chinese) Abstract (in English) Acknowledgement Contents List of Figures List of Tables Chapter 1: Introduction 1.1 Background 1.2. Objectives 1.3 Research methodology 1.4 Organization of thesis Chapter 2: Literature Review 2.1 Capacity Planning and Scheduling Problem 2.2 Existing Optimization Method Chapter 3: Problem Definition and Methodology 3.1 TFT-LCD array fab process 3.2 Integrated Ant Colony Optimization and Capacity Planning System 3.2.1 Ant Colony Optimization (ACO) 3.2.2 Capacity Planning System Chapter 4: Computational Result and Analysis 4.1 Simulation Environment 4.2 ACO parameter setting 4.3 GA parameter setting 4.4 Experimental Design and Analysis 4.4.1 Experimental Design Factors and Responses 4.4.2 Result and Discussion 4.5 Performance Analysis of ACO and GA 4.5.1 Performance Analysis for Significant Responses 4.5.2 Performance Analysis of Significant Factors Chapter 5: Conclusion and Future Research 5.1 Conclusion 5.2 Future research Reference Appendix Appendix 1: Parameter setting Appendix 2: Main effects plot Appendix 3: Paired t-test

    Anon, 2013. Display taiwan 2013 - the 15th international flat panel display exposition [online]. Taiwan External Trade Development Council.
    Chang, S.-C., 2005. The tft–lcd industry in taiwan: Competitive advantages and future developments. Technology in Society, 27 (2), 199-215.
    Chen, J.C., Chen, C.W., Lin, C.J. & Rau, H., 2005. Capacity planning with capability for multiple semiconductor manufacturing fabs. Computers & Industrial Engineering, 48 (4), 709-732.
    Chen, J.C., Chen, T.L., Pratama, B.R. & Tu, Q.F., 2013. Order prioritizing in tft-lcd array fab using multi-objective genetic algorithm. Working Paper.
    Chen, J.C., Fan, Y.C. & Chen, C.W., 2009a. Capacity requirements planning for twin fabs of wafer fabrication. International Journal of Production Research, 47 (16), 4473-4496.
    Chen, J.C., Su, L.-H., Sun, C.-J. & Hsu, M.-F., 2009b. Infinite capacity planning for ic packaging plants. International Journal of Production Research, 48 (19), 5729-5748.
    Chen, J.C., Su, L.H., Chen, C.C., Peng, T.W. & Chao, G.C., 2011a. Release planning for color filter fabs based on iterative simulation. Journal of the Society for Information Display, 19 (7), 480-487.
    Chen, T.L., Chen, Y.Y. & Lu, H.C., 2012. A capacity allocation and expansion model for tft-lcd multi-site manufacturing. Journal of Intelligent Manufacturing, 1-26.
    Chen, T.L., Lin, J.T. & Fang, S.C., 2010. A shadow-price based heuristic for capacity planning of tft-lcd manufacturing. Journal of Industrial and Management Optimization, 6 (1), 209-239.
    Chen, W.-L., Huang, C.-Y. & Lai, Y.-C., 2009c. Multi-tier and multi-site collaborative production: Illustrated by a case example of tft-lcd manufacturing. Computers & Industrial Engineering, 57 (1), 61-72.
    Chen, Y.Y., Lin, J.T. & Chen, T.L., 2011b. A two-phase dynamic dispatching approach to semiconductor wafer testing. Robotics and Computer-Integrated Manufacturing, 27 (5), 889-901.
    Choi, H.-S., Kim, J.-S. & Lee, D.-H., 2011. Real-time scheduling for reentrant hybrid flow shops: A decision tree based mechanism and its application to a tft-lcd line. Expert Systems with Applications, 38 (4), 3514-3521.
    Gambardella, L.M. & Dorigo, M., 2000. An ant colony system hybridized with a new local search for the sequential ordering problem. INFORMS Journal on Computing Summer, 12, 237-255.
    Geng, N. & Jiang, Z., 2009. A review on strategic capacity planning for the semiconductor manufacturing industry. International Journal of Production Research, 47 (13), 3639-3655.
    Hood, S.J., Bermon, S. & Barahona, F., 2003. Capacity planning under demand uncertainty for semiconductor manufacturing. Semiconductor Manufacturing, IEEE Transactions on, 16 (2), 273-280.
    Huang, R.-H., 2010. Multi-objective job-shop scheduling with lot-splitting production. International Journal of Production Economics, 124 (1), 206-213.
    Lin, J.T., Chen, T.L. & Huang, C.C., 2004. A hierarchy planning model for tft-lcd production chain. International Journal of Electronic Business Management, 2 (1), 59-68.
    Lin, J.T., Wang, F.K. & Peng, C.C., 2008. Lot release times and dispatching rule for a tft-lcd cell process. Robotics and Computer-Integrated Manufacturing, 24 (2), 228-238.
    Min, H.-S. & Yih, Y., 2003. Development of a real-time multi-objective scheduler for a semiconductor fabrication system. International Journal of Production Research, 41 (10), 2345-2364.
    Moncayo-Martínez, L.A. & Zhang, D.Z., 2011. Multi-objective ant colony optimisation: A meta-heuristic approach to supply chain design. International Journal of Production Economics, 131 (1), 407-420.
    Pecht, M. & Lee, C.S., 1997. Flat panel displays-what is going on in east asia outside japan. Circuit World 24 (1), 20-27.
    Pitakaso, R., Almeder, C., Doerner, K.F. & Hartl, R.F., 2007. A max-min ant system for unconstrained multi-level lot-sizing problems. Computers & Operations Research, 34 (9), 2533-2552.
    Tay, J.C. & Ho, N.B., 2008. Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems. Computers & Industrial Engineering, 54 (3), 453-473.
    Wang, F.-K. & Chang, K.-K., 2010. Adaptive neuro-fuzzy inference system for combined forecasts in a panel manufacturer. Expert Systems with Applications, 37 (12), 8119-8126.
    Wang, K.-J. & Chen, M.J., 2009. Cooperative capacity planning and resource allocation by mutual outsourcing using ant algorithm in a decentralized supply chain. Expert Systems with Applications, 36 (2, Part 2), 2831-2842.
    Wang, K.J., Lee, S.J., Yeh, C.F. & Huang, T.C., 2007. Operating an effective resource allocation for wire bonders in the semiconductor assembly industry. Production Planning & Control, 18 (3), 226-238.
    Wang, S.-T., Li, M.-H. & Lin, W.-T., 2011. An analysis of tft-lcd industry success factors by integrating fdahp and gray sequencing. African Journal of Business Management, 5 (27), 11011-11021.
    Wein, L.M., 1988. Scheduling semiconductor wafer fabrication. Semiconductor Manufacturing, IEEE Transactions on, 1 (3), 115-130.
    Yagmahan, B. & Yenisey, M.M., 2010. A multi-objective ant colony system algorithm for flow shop scheduling problem. Expert Systems with Applications, 37 (2), 1361-1368.

    QR CODE