簡易檢索 / 詳目顯示

研究生: 陳陞陽
Sheng-Yang Chen
論文名稱: 豬軟骨細胞於藍藻蛋白-葡聚糖接枝薄膜生長之探討
Assessments of the growth of porcine chondrocytes on the films of cyanophycin-dextran conjugate
指導教授: 曾文祺
Wen-Chi Tseng
口試委員: 方翠筠
Tsuei-Yun Fang
陳秀美
Hsiu-Mei Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 214
中文關鍵詞: 軟骨細胞藍藻蛋白葡聚糖
外文關鍵詞: chondrocyte, cyanophycin, dextran
相關次數: 點閱:462下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   由於軟骨組織自體修復的諸多限制與高齡化社會的來臨,關節軟骨缺損的治療研究近年來逐漸受到重視。

      藍藻蛋白為非核糖體合成蛋白質,具備良好的生物相容性與降解性,結構帶正電有助於細胞貼附。葡聚糖為天然多醣,具備良好的生物相容性與降解性,另外還具備水溶性與保水性,其表面不帶電,不利於細胞貼附。過去在組織再生的研究中曾用來作為醣胺聚醣的類似物與有助於細胞貼附的高分子結合,模擬基質組成進行細胞培養。

      本研究從「仿生」概念出發,將兩種材料以不同比例結合,針對豬軟骨細胞於藍藻蛋白-葡聚糖接枝薄膜的生長進行探討,期待藍藻蛋白-葡聚糖接枝薄膜能作為軟骨組織工程研究中另一個可行的基材。

      藍藻蛋白-葡聚糖接枝產物利用比色法、分子量鑑定與元素分析方法得到具體的接枝程度,以FT-IR觀察接枝前後官能基變化,並測試溶解度。經戊二醛交聯而成的藍藻蛋白-葡聚糖接枝薄膜以螢光染色法確認交聯效果。並觀察不同時間點的膨潤度。將CHO cell培養於薄膜進行初步的細胞生長測試,再將不同代數的豬軟骨細胞培養於薄膜。以MTT assay、Bradford protein assay與DNA quantitation三種方法測試豬軟骨細胞於薄膜上的增生能力,以Blyscan assay測試醣胺聚醣合成效率,並以qRT-PCR測試特定mRNA的表現。
    結果顯示藍藻蛋白接枝葡聚糖後可改善溶解度的限制。而形成藍藻蛋白-葡聚糖接枝薄膜後,膨潤度隨葡聚糖比例的提高而增加。藍藻蛋白改善了在軟骨組織自癒過程中醣類不利於細胞貼附的缺點,提高細胞貼附與增生能力,同時適量的藍藻蛋白可維持葡聚糖對於豬軟骨細胞的生長趨向體內生長狀態的助益,對於較高代數的軟骨細胞依舊有不錯的成效。

      綜上所述,藍藻蛋白接枝葡聚糖薄膜可維持軟骨細胞一定的增生能力,有效延長豬軟骨細胞體外培養維持機能的時間,甚至幫助高代數的豬軟骨細胞恢復分化能力。


      The studies of treatments for articular cartilage defects have received lots of attentions due to the limitations of self-repair abilities of articular cartilage.

      Cyanophycin, a non-ribosomal synthesis protein, has good biocompatibility and biodegradability, and its structure is positively charged which is helpful for cell adhesion. Dextran, a kind of natural polysaccharides, also has good biocompatibility and biodegradability in addition to good water solubility and good capability for water retention. However, it has no charges for cells to adhere onto. In the previous studies regarding tissue regeneration, dextran has been used as a substitute for glycosaminoglycan, and combined with other cell-adhesion polymers to mimic the structure of extracellular matrix for cell growth. This study is based on “biomimetic”, to combine the above two biomaterials, and focused on assessing the growth of porcine chondrocytes on the films of cyanophycin-dextran conjugate.

      The grafting ratios of cyanophycin-dextran conjugate were determined by colorimetry, gel permeation chromatography (GPC) and elemental analysis (EA), and Fourier transform infrared spectroscopy (FT-IR) was used to analyze the change in the functional groups of the conjugates. The films of cyanophycin-dextran conjugate were cross-linked with glutaraldehyde, and the cross-linking results were observed under a fluorescence microscopy after fluorescence staining. The swelling ratios were tested at different time intervals. CHO cells were grown on the films as a primary test for cell viability, and then two different passages of porcine chondrocytes were further grown on the films. The cell viability was monitored by MTT assay, Bradford protein assay and DNA quantitation. The glycosaminoglycan contents were examined by Blyscan assay, and the specific mRNA expressions were measured by qRT-PCR.

      The results showed that the grafting of dextran enhanced the water solubility of cyanophycin, and the swelling ratios of the films increased with dextran grafting. On the other hand, the grafting of cyanophycin improved cell-adhesion on the polysaccharides, one of the major limitations of cartilage self-repair. Meanwhile, moderate contents of cyanophycin could maintain the advantages of dextran which provided a growth condition for chondrocytes similar to an in vivo one. Moreover, the films could be helpful for aging chondrocytes.

      In conclusion, the films of cyanophycin-dextran conjugate could maintain cell viability and delay chondrocyte dedifferentiation, and could help aging chondrocytes regenerate.

    目錄 中文摘要 I ABSTRACT III 誌謝 V 目錄 VII 圖目錄 XII 表目錄 XXII 一、緒論 1 二、文獻回顧 3 2.1 關節軟骨 3 2.1.1 關節軟骨的組成 3 2.1.1.1 軟骨細胞 4 2.1.1.2 膠原纖維 4 2.1.1.3 蛋白多糖 5 2.1.1.4 非膠原纖維蛋白 6 2.1.1.5 組織液 7 2.1.2 關節軟骨缺損與組織工程 7 2.1.2.1 關節軟骨缺損與自體修復 8 2.1.2.2 關節軟骨缺損的治療 10 2.1.2.3 軟骨組織工程 11 2.2 藍藻蛋白 14 2.2.1 藍藻蛋白結構與生產 14 2.2.2 經基因重組菌株生產的藍藻蛋白 15 2.2.3 藍藻蛋白的應用與發展 18 2.3 葡聚糖 20 2.3.1 葡聚糖的結構與生產 20 2.3.2 葡聚糖的應用 22 2.3.3 葡聚糖與蛋白質化學修飾法 23 三、實驗 26 3.1 藥品清單 26 3.2 藥品配置 29 3.3 實驗儀器 36 3.4 實驗步驟 37 3.4.1 藍藻蛋白生產 37 3.4.2 藍藻蛋白純化 38 3.4.3 藍藻蛋白毒性測試 40 3.4.4 葡聚糖開環反應 41 3.4.5 葡聚糖醛基定量 42 3.4.6 藍藻蛋白與葡聚糖接枝反應 43 3.4.6.1接枝低分子量葡聚糖(Mw = 1.5 kDa) 44 3.4.6.2接枝高分子量氧化葡聚糖(Mw = 2.0 MDa) 45 3.4.7 藍藻蛋白-葡聚糖接枝產物接枝程度定量 47 3.4.7.1 比色法 47 3.4.7.2 分子量鑑定 48 3.4.7.3 元素分析 49 3.4.8 藍藻蛋白-葡聚糖接枝產物官能基鑑定 50 3.4.9 藍藻蛋白-葡聚糖接枝產物溶解度測試 51 3.4.10 藍藻蛋白-葡聚糖接枝薄膜置備 51 3.4.11 藍藻蛋白-葡聚糖接枝薄膜螢光染色法鑑定 52 3.4.12 藍藻蛋白-葡聚糖接枝薄膜膨潤度測試 53 3.4.13 藍藻蛋白-葡聚糖接枝薄膜對CHO cell生長測試 53 3.4.14 藍藻蛋白-葡聚糖接枝薄膜對豬軟骨細胞生長之影響 56 3.4.14.1 豬軟骨細胞分離 56 3.4.14.2 豬軟骨細胞生長測試 57 3.4.14.3 豬軟骨細胞醣胺聚醣分泌 58 3.4.14.4 豬軟骨細胞特定mRNA表現 60 四、實驗結果與討論 65 4.1 藍藻蛋白-葡聚糖接枝產物製備與分析 65 4.1.1 藍藻蛋白毒性測試 65 4.1.2 葡聚糖醛基定量 67 4.1.3 藍藻蛋白-葡聚糖接枝產物接枝程度定量 68 4.1.3.1 比色法 68 4.1.3.2 分子量鑑定 70 4.1.3.3 元素分析 71 4.1.4 藍藻蛋白-葡聚糖接枝產物官能基鑑定 73 4.1.5 藍藻蛋白-葡聚糖接枝產物溶解度測試 76 4.2 藍藻蛋白-葡聚糖接枝薄膜製備與分析 78 4.2.1 藍藻蛋白-葡聚糖接枝薄膜置備 78 4.2.2 藍藻蛋白-葡聚糖接枝薄膜螢光染色法鑑定 79 4.2.3 藍藻蛋白-葡聚糖接枝薄膜膨潤度測試 80 4.3 動物細胞於藍藻蛋白-葡聚糖接枝薄膜貼附與生長情形 82 4.3.1 藍藻蛋白-葡聚糖接枝薄膜對CHO cell生長之影響 82 4.3.2 藍藻蛋白-葡聚糖接枝薄膜對豬軟骨細胞生長之影響 101 4.3.2.1 初代豬軟骨細胞分離 102 4.3.2.1 豬軟骨細胞生長測試 102 4.3.2.2 豬軟骨細胞醣胺聚醣含量分析 139 4.3.2.3 豬軟骨細胞特定mRNA表現 149 五、結果與討論 177 5.1 文獻回顧 177 5.2 目標實現 179 5.3 未來展望 179 參考文獻 181

    1. O'Driscoll, S.W., The healing and regeneration of articular cartilage. Journal of Bone & Joint Surgery, 1998. 80(12): p. 1795-1812.
    2. Firestein, G.S., et al., Synovial Fluid and Nutrition of Joint Structures, in Kelley's Textbook of Rheumatology. 2013, Elsevier: Amsterdam. p. 14-16.
    3. Hay, E.D., Cell Biology of Extracellular Matrix. 2 ed. 1991, New York: Plenum Press.
    4. Stockwell, R.A., Chondrocyte Structure, in Biology of Cartilage Cells. 1979, Cambridge University Press: Cambridge. p. 7-29.
    5. Schulz, R.M. and A. Bader, Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. European Biophysics Journal, 2007. 36(4-5): p. 539-668.
    6. Muir, I.H.M., Biochemistry, in Adult articular cartilage, M.A.R. Freeman, Editor. 1979, Pitman Medical: Kent. p. 145-214.
    7. Sweet, M.B., E.J. Thonar, and A.R. Immelman, Regional distribution of water and glycosaminoglycan in immature articular cartilage. Biochimica et Biophysica Acta, 1977. 500(1): p. 137-186.
    8. Ross, M.H. and W. Pawlina, Cartilage, in Histology. 2006, Lippincott Williams & Wilkins: Philadelphia. p. 182-201.
    9. Buckwalter, J.A., V.C. Mow, and A. Ratcliffe, Restoration of Injured or Degenerated Articular Cartilage. Journal of the American Academy of Orthopaedic Surgeons, 1994. 2(4): p. 192-201.
    10. Temenoff, J.S. and A.G. Mikos, Review: tissue engineering for regeneration of articular cartilage. Biomaterials, 2000. 21(5): p. 431-440.
    11. Heinegard, D.P., M., Structure and metabolism of proteoglycans, in Extracellular Matrix Biochemistry, K.A. Piez and A.H. Reddi, Editors. 1984, Elsevier: New York. p. 277-328.
    12. Van, C.M., S.P. Christopher, and A.K. Michael, Biomechanics of Articular Cartilage, in Basic Biomechanics of the Musculoskeletal System, M.N.V.H. Frankel, Editor. 1989, Lippincott Williams & Wilkins: Philadelphia. p. 31-58.
    13. Buckwalter, J.A. and H.J. Mankin, Articular cartilage: tissue design and chondrocyte-matrix interactions. Instructional course lectures, 1998. 47: p. 477-486.
    14. Buckwalter, J.A., P.J. Roughley, and L.C. Rosenberg, Age-related changes in cartilage proteoglycans: quantitative electron microscopic studies. Microscopy Research and Technique, 1994. 28(5): p. 398-408.
    15. Verzijl, N., et al., Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochemical Journal, 2000. 350 Pt 2: p. 381-387.
    16. Buckwalter, J.A., et al., Soft-tissue aging and musculoskeletal function. Journal of Bone & Joint Surgery, 1993. 75(10): p. 1533-1548.
    17. DeGroot, J., et al., Age-related decrease in proteoglycan synthesis of human articular chondrocytes: the role of nonenzymatic glycation. Arthritis Rheum, 1999. 42(5): p. 1003-1009.
    18. Sandy, J.D., H.L.G. Brown, and D.A. Lowther, Degradation of proteoglycan in articular cartilage. Biochimica et Biophysica Acta, 1978. 543(4): p. 536-544.
    19. Yamada, H., et al., Human articular cartilage contains an inhibitor of plasminogen activator. Journal of Rheumatology, 1988. 15(7): p. 1138-1143.
    20. Nguyen, Q., et al., Degradation of proteoglycan aggregate by a cartilage metalloproteinase. Evidence for the involvement of stromelysin in the generation of link protein heterogeneity in situ. Biochemical Journal, 1989. 259(1): p. 61-67.
    21. Gunja-Smith, Z., H. Nagase, and J.F. Woessner, Jr., Purification of the neutral proteoglycan-degrading metalloproteinase from human articular cartilage tissue and its identification as stromelysin matrix metalloproteinase-3. Biochemical Journal, 1989. 258(1): p. 115-119.
    22. Campbell, I.K., et al., Recombinant human interleukin-1 stimulates human articular cartilage to undergo resorption and human chondrocytes to produce both tissue- and urokinase-type plasminogen activator. Biochimica et Biophysica Acta, 1988. 967(2): p. 183-194.
    23. Coutts, R.D., R.L. Sah, and D. Amiel, Effects of growth factors on cartilage repair. Instructional course lectures, 1997. 46: p. 487-494.
    24. Buckwalter, J.A., Articular cartilage: injuries and potential for healing. Journal of orthopaedic and sports physical therapy, 1998. 28(4): p. 192-202.
    25. Hunziker, E.B., Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthritis Cartilage, 1999. 7(1): p. 15-28.
    26. Hunziker, E.B. and E. Kapfinger, Removal of proteoglycans from the surface of defects in articular cartilage transiently enhances coverage by repair cells. The Journal of Bone & Joint Surgery, 1998. 80(1): p. 144-150.
    27. Buckwalter, J.A. and H.J. Mankin, Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instructional course lectures, 1998. 47: p. 487-504.
    28. Wirth, C.J. and M. Rudert, Techniques of cartilage growth enhancement: A review of the literature. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 1996. 12(3): p. 300-308.
    29. Langer, R. and J.P. Vacanti, Tissue engineering. Science, 1993. 260(5110): p. 920-926.
    30. Brittberg, M., et al., Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. The New England Journal of Medicine, 1994. 331(14): p. 889-95.
    31. Benya, P.D. and J.D. Shaffer, Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell, 1982. 30(1): p. 215-224.
    32. Minns, R.J., D.S. Muckle, and J.E. Donkin, The repair of osteochondral defects in osteoarthritic rabbit knees by the use of carbon fibre. Biomaterials, 1982. 3(2): p. 81-86.
    33. Messner, K. and J. Gillquist, Synthetic implants for the repair of osteochondral defects of the medial femoral condyle: a biomechanical and histological evaluation in the rabbit knee. Biomaterials, 1993. 14(7): p. 513-521.
    34. Sittinger, M., et al., Resorbable polyesters in cartilage engineering: affinity and biocompatibility of polymer fiber structures to chondrocytes. Journal of Biomedical Materials Research Part A, 1996. 33(2): p. 57-63.
    35. Ponticiello, M.S., et al., Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. Journal of Biomedical Materials Research Part A, 2000. 52(2): p. 246-255.
    36. Maehara, H., et al., Repair of large osteochondral defects in rabbits using porous hydroxyapatite/collagen (HAp/Col) and fibroblast growth factor-2 (FGF-2). Journal of Orthopaedic Research, 2010. 28(5): p. 677-686.
    37. Ko, C.S., et al., Type II collagen-chondroitin sulfate-hyaluronan scaffold cross-linked by genipin for cartilage tissue engineering. Journal of Bioscience and Bioengineering, 2009. 107(2): p. 177-182.
    38. Tsai, W.B. and M.C. Wang, Effect of an avidin-biotin binding system on chondrocyte adhesion, growth and gene expression. Biomaterials, 2005. 26(16): p. 3141-3151.
    39. Borzi, A., Le comunicazioni intracellulari delle Nostochinee. Malpighia, 1887. 1: p. 174-203.
    40. Allen, M.M., F. Hutchison, and P.J. Weathers, Cyanophycin granule polypeptide formation and degradation in the cyanobacterium Aphanocapsa 6308. Journal of Bacteriology, 1980. 141(2): p. 687-693.
    41. Simon, R.D. and P. Weathers, Determination of the structure of the novel polypeptide containing aspartic acid and arginine which is found in cyanobacteria. Biochimica et Biophysica Acta (BBA) - Protein Structure, 1976. 420(1): p. 165-176.
    42. Mooibroek, H., et al., Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Applied microbiology and biotechnology, 2007. 77(2): p. 257-267.
    43. Mackerras, A.H., N.M. de Chazal, and G.D. Smith, Transient accumulations of cyanophycin in Anabaena cylindrica and Synechocystis 6308. Journal of General Microbiology, 1990. 136(10): p. 2057-2065.
    44. Schwamborn, M., Chemical synthesis of polyaspartates: a biodegradable alternative to currently used polycar☐ylate homo- and copolymers. Polymer Degradation and Stability, 1998. 59(1–3): p. 39-45.
    45. Ziegler, K., et al., Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartate (cyanophycin). European Journal of Biochemistry, 1998. 254(1): p. 154-159.
    46. Aboulmagd, E., F.B. Oppermann-Sanio, and A. Steinbuchel, Molecular characterization of the cyanophycin synthetase from Synechocystis sp. strain PCC6308. Archives of Microbiology, 2000. 174(5): p. 297-306.
    47. Berg, H., et al., Biosynthesis of the cyanobacterial reserve polymer multi-L-arginyl-poly-L-aspartic acid (cyanophycin): mechanism of the cyanophycin synthetase reaction studied with synthetic primers. European Journal of Biochemistry, 2000. 267(17): p. 5561-5570.
    48. Voss, I., et al., Identification of the Anabaena sp. strain PCC7120 cyanophycin synthetase as suitable enzyme for production of cyanophycin in gram-negative bacteria like Pseudomonas putida and Ralstonia eutropha. Biomacromolecules, 2004. 5(4): p. 1588-1595.
    49. Frey, K.M., et al., Technical-Scale Production of Cyanophycin with Recombinant Strains of Escherichia coli. Applied and Environmental Microbiology, 2002. 68(7): p. 3377-3384.
    50. Hannig, G. and S.C. Makrides, Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol, 1998. 16(2): p. 54-60.
    51. Kroll, J., S. Klinter, and A. Steinbuchel, A novel plasmid addiction system for large-scale production of cyanophycin in Escherichia coli using mineral salts medium. Applied Microbiology and Biotechnology, 2011. 89(3): p. 593-604.
    52. Steinle, A., K. Bergander, and A. Steinbuchel, Metabolic engineering of Saccharomyces cerevisiae for production of novel cyanophycins with an extended range of constituent amino acids. Applied and Environmental Microbiology, 2009. 75(11): p. 3437-46.
    53. Tseng, W.C., et al., Assessments of growth conditions on the production of cyanophycin by recombinant Escherichia coli strains expressing cyanophycin synthetase gene. Biotechnol Prog, 2012. 28(2): p. 358-363.
    54. Obst, M. and A. Steinbuchel, Cyanophycin—an Ideal Bacterial Nitrogen Storage Material with Unique Chemical Properties, in Inclusions in Prokaryotes, J. Shively, Editor. 2006, Springer Berlin Heidelberg. p. 167-193.
    55. Yeh, C.L., et al., Effect of arginine on cellular adhesion molecule expression and leukocyte transmigration in endothelial cells stimulated by biological fluid from surgical patients. Shock, 2007. 28(1): p. 39-44.
    56. Mazia, D., G. Schatten, and W. Sale, Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. J Cell Biol, 1975. 66(1): p. 198-200.
    57. Veronese, F.M., Peptide and protein PEGylation: a review of problems and solutions. Biomaterials, 2001. 22(5): p. 405-417.
    58. Obst, M. and A. Steinbuchel, Microbial degradation of poly(amino acid)s. Biomacromolecules, 2004. 5(4): p. 1166-1176.
    59. Khalikova, E., P. Susi, and T. Korpela, Microbial Dextran-Hydrolyzing Enzymes: Fundamentals and Applications. Microbiology and Molecular Biology Reviews, 2005. 69(2): p. 306-325.
    60. Sarwat F., et al., Production & Characterization of a Unique Dextran from an Indigenous Leuconostoc mesenteroides CMG713. International Journal of Biological Sciences, 2008. 4(6): p. 379-386.
    61. Naessens, M., et al., Leuconostoc dextransucrase and dextran: production, properties and applications. Journal of Chemical Technology & Biotechnology, 2005. 80(8): p. 845-860.
    62. Montville, T.J., C.L. Cooney, and A.J. Sinskey, Distribution of dextransucrase in Streptococcus mutans and observations on the effect of soluble dextran on dextransucrase activities. Infection and Immunity, 1977. 18(3): p. 629-635.
    63. Yu, S.Y., et al., Loading and Release of Lysozyme by Casein-g-dextran Graft Copolymer. Chemical Journal of Chinese Universities, 2008. 29(5): p. 1027-1032.
    64. Zhang, H., et al., Optimization of culture conditions for recombinant dextransucrase expression. Chinese Journal of Biotechnology, 2009. 25(12): p. 2022-2028.
    65. Foster, J.H., et al., Low molecular weight dextran in vascular surgery: prevention of early thrombosis following arterial reconstruction in 85 cases. Annals of Surgery, 1966. 165(5): p. 764-770.
    66. Finch, C.A., Poly(ethy1ene glycol) chemistry : Biotechnical and biomedical applications. Vol. 33. 1992, New York: Plenum Publishing. 115-117.
    67. Means, G.E. and R.E. Feeney, Chemical modifications of proteins: history and applications. Bioconjugate Chemistry, 1990. 1(1): p. 2-12.
    68. Reisner, H.M. and R.L. Lundblad, Identifying residues in antigenic determinants by chemical modification. Methods in Molecular Biology, 2009. 524: p. 103-117.
    69. Tseng, W.C. and C.M. Jong, Improved Stability of Polycationic Vector by Dextran-Grafted Branched Polyethylenimine. Biomacromolecules, 2003. 4(5): p. 1277-1284.
    70. Ferdous, A., et al., Poly(L-lysine)-graft-dextran copolymer: amazing effects on triplex stabilization under physiological pH and ionic conditions (in vitro). Nucleic acids research, 1998. 26(17): p. 3949-3954.
    71. Derkaoui, S.M., et al., Films of dextran-graft-polybutylmethacrylate to enhance endothelialization of materials. Acta Biomaterialia, 2010. 6(9): p. 3506-3513.
    72. Liu, Y. and M.B. Chan-Park, A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials, 2010. 31(6): p. 1158-1170.
    73. Michel, E.C., et al., Dextran grafting on PTFE surface for cardiovascular applications. Biomatter, 2014. 4(1).
    74. Massia, S.P. and J. Stark, Immobilized RGD peptides on surface-grafted dextran promote biospecific cell attachment. Journal of Biomedical Materials Research, 2001. 56(3): p. 390-9.
    75. Lomas, C., et al., Cyclic mechanical load causes global translational arrest in articular chondrocytes: a process which is partially dependent upon PKR phosphorylation. Eur Cell Mater, 2011. 22: p. 178-89.
    76. Liu, J.C., et al., Effects of thyroid hormone with high concentration on chondrocyte pellets cultured in vitro, in Plastic Surgery Hospital. 2012, Chinese Academy of Medical Science: Beijing. p. 7.
    77. Bernstein, P., et al., Sox9 expression of alginate-encapsulated chondrocytes is stimulated by low cell density. Journal of Biomedical Materials Research, 2009. 91(3): p. 910-918.
    78. Peng, L., B. Wang, and P. Ren, Reduction of MTT by flavonoids in the absence of cells. Colloids Surf B Biointerfaces, 2005. 45(2): p. 108-111.
    79. Maia, J., et al., Insight on the periodate oxidation of dextran and its structural vicissitudes. Polymer, 2011. 52(2): p. 258-265.
    80. Jentoft, N. and D.G. Dearborn, Labeling of proteins by reductive methylation using sodium cyanoborohydride. Journal of Biological Chemistry, 1979. 254(11): p. 4359-4365.
    81. Borch, R.F., M.D. Bernstein, and H.D. Durst, The Cyanohydridoborate anion as a selective reducing agent. Journal of the American Chemical Society, 1971. 93(12): p. 2897-2904.
    82. Satake, K., et al., The spectrophotometric determination of amine, amino acid and peptide with 2,4,6-trinitrobenzene 1-sulfonic acid. Journal of Biochemistry, 1960. 47: p. 654-660.
    83. Coligan, J.E., J.P. Tam, and J. Shao, Production of antipeptide antisera. Curr Protoc Neurosci, 2001. Chapter 5: p. Unit 5.6.
    84. Magun, B.E. and J.W. Kelly, A new fluorescent method with phenanthrenequininone for the histochemical demonstration of arginine residue in tissues. Journal of Histochemistry & Cytochemistry. Journal of Histochemistry & Cytochemistry, 1969. 17(12): p. 821-827.
    85. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976. 72(1–2): p. 248-254.
    86. Okochi, M., et al., Fluorometric observation of viable and dead adhering diatoms using TO-PRO-1 iodide and its application to the estimation of electrochemical treatment. Applied Microbiology and Biotechnology, 1999. 51(3): p. 364-369.
    87. Carroll, G.J., Spectrophotometric measurement of proteoglycans in osteoarthritic synovial fluid. Ann Rheum Dis, 1987. 46(5): p. 375-379.
    88. Farndale, R.W., D.J. Buttle, and A.J. Barrett, Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochimica et Biophysica Acta, 1986. 883(2): p. 173-177.
    89. Chatterji, P.R., Gelatin with hydrophilic/hydrophobic grafts and glutaraldehyde crosslinks. Journal of Applied Polymer Science, 1989. 37(8): p. 2203-2212.
    90. Draye, J.P., et al., In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials, 1998. 19(18): p. 1677-1687.
    91. Ng, S.S., et al., Biomechanical study of the edge outgrowth phenomenon of encapsulated chondrocytic isogenous groups in the surface layer of hydrogel scaffolds for cartilage tissue engineering. Acta Biomater, 2012. 8(1): p. 244-252.
    92. Marlovits, S., et al., Changes in the ratio of type-I and type-II collagen expression during monolayer culture of human chondrocytes. J Bone Joint Surg Br, 2004. 86(2): p. 286-295.
    93. Hardingham, T., S. Tew, and A. Murdoch, Tissue engineering: chondrocytes and cartilage. Arthritis Res, 2002. 4 Suppl 3: p. S63-68.
    94. Brodkin, K.R., A.J. Garcı́a, and M.E. Levenston, Chondrocyte phenotypes on different extracellular matrix monolayers. Biomaterials, 2004. 25(28): p. 5929-5938.
    95. Wang, Y., et al., Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials, 2006. 27(25): p. 4434-4442.
    96. Ishaug-Riley, S.L., et al., Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films. Biomaterials, 1999. 20(23–24): p. 2245-2256.
    97. Klangjorhor, J., et al., Hyaluronan production and chondrogenic properties of primary human chondrocyte on gelatin based hematostatic spongostan scaffold. J Orthop Surg Res, 2012. 7: p. 40.
    98. Correia, C.R., et al., Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Tissue Engineering Part C: Methods, 2011. 17(7): p. 717-730.
    99. Chung, C., et al., Differential behavior of auricular and articular chondrocytes in hyaluronic acid hydrogels. Tissue Eng Part A, 2008. 14(7): p. 1121-1131.
    100. Caron, M.M., et al., Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthritis Cartilage, 2012. 20(10): p. 1170-1178.
    101. Moreira Teixeira, L.S., et al., Self-attaching and cell-attracting in-situ forming dextran-tyramine conjugates hydrogels for arthroscopic cartilage repair. Biomaterials, 2012. 33(11): p. 3164-3174.

    無法下載圖示 全文公開日期 2019/07/29 (校內網路)
    全文公開日期 2034/07/29 (校外網路)
    全文公開日期 2034/07/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE