簡易檢索 / 詳目顯示

研究生: 黃鎮台
Chen-Tai Huang
論文名稱: 應力補償銻砷化鎵/磷砷化鎵與銻砷化鎵/砷化鎵/磷砷化鎵量子井材料光學特性研究
The Optical Characterization of GaAsSb/GaAsP and GaAsSb/GaAs/GaAsP Strain Compensated Quantum Well Structures
指導教授: 黃鶯聲
Ying-Sheng Huang
口試委員: 蘇炎坤
Yan-Kuin Su
林浩雄
Hao-Hsiung Lin
程光蛟
Kwong-Kau Tiong
林得裕
Der-Yuh Lin
李奎毅
Kuei-Yi Lee
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 105
中文關鍵詞: 應力補償量子井材料光學特性銻砷化鎵/磷砷化鎵銻砷化鎵/砷化鎵/磷砷化鎵
外文關鍵詞: Strain Compensated, Quantum Well Structures, Optical Characterization, GaAsSb/GaAsP, GaAsSb/GaAs/GaAsP
相關次數: 點閱:214下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文為利用光反射調制光譜(PR)、非接觸電場調制反射光譜(CER)、 壓電調制反射光譜(PzR)、表面光電壓(SPV)、與光激發螢光光譜(PL)等光學技術,研究銻砷化鎵/砷化鎵量子井(GaAsSb/GaAs)與具應力補償之銻砷化鎵/磷砷化鎵量子井(GaAsSb/GaAsP)及銻砷化鎵/砷化鎵/磷砷化鎵(GaAsSb/GaAs/GaAsP)量子井材料之光學特性。量測之樣品是以水平有機金屬化學氣相沉積系統(AIXTRON-200)於n型摻雜之砷化鎵基板上,成長壓力與溫度分為50 mbar及525℃,TEGa、TMSb、AsH3及PH3分別作為鎵、銻、砷、磷的前驅物(Precursor)
在銻砷化鎵/砷化鎵量子井部分,GaAs0.64Sb0.36/GaAs樣品之PR譜線,在其基態躍遷區域僅有非常微弱躍遷訊號,在低溫下之激發源功率相依之PL實驗中,其譜線則有明顯的藍移現象,此乃因此樣品之GaAs0.64Sb0.36與GaAs之介面為近第二型量子井結構所致。
在銻砷化鎵/磷砷化鎵與銻砷化鎵/砷化鎵/磷砷化鎵兩種樣品之PR, CER, PzR及SPV譜線中,顯示第一型量子井結構所具有一系列躍遷訊號,因其結構具有應力補償之效果,因此由其PR譜線有激子躍遷之訊號。另外其磷砷化鎵位障層(barrier)可發現因伸張應力而分裂之輕電洞(LH)與重電洞(HH)的訊號,且輕電洞應較重電洞有較高能量,並可與理論計算吻合。在其量子井之激子躍遷由實驗結果與量子井理論計算可以確認出所有激子躍遷信號的能量位置,並得到各個樣品量子井中應力的相關信息以及導電帶偏移(Conduction Band Offset, Qc)的大小。
銻砷化鎵/砷化鎵/磷砷化鎵部分,因其結構具應力補償,因此其PR譜線與DSPV譜線均有激子躍遷訊號,並比銻砷化鎵/磷砷化鎵之訊號更為豐富。由PL與PR譜線,我們得知此結構之量子井材料,且其主要躍遷E0 能量已對應於1.3μm,可達到於光通訊應用之期待。


Abstract
Optical characterization of strained GaAsSb/GaAs quantum well (QW) as well as strain-compensated GaAsSb/GaAsP and GaAsSb/GaAs/GaAsP QW structures has been carried out by using photoreflectance (PR), contactless electroreflectance (CER), piezoreflectance (PzR), surface photovoltage (SPV) spectroscopy and photoluminescence (PL) techniques. The samples employed in this study were grown on n+ GaAs (100) substrates by using a horizontal metal organic vapor phase epitaxy system (AIXTRON-200) equipped with an IR-lamp heater. The total pressure and growth temperature of reactor were 50 mbar and 525 ºC, respectively. TEGa, TMSb, AsH3 and PH3 were used as the precursors for Ga, Sb, As and P sources.
For GaAs0.64Sb0.36/GaAs QW structures, only a very weak PR feature observed in the vicinity of fundamental transition and a large blueshift of the peak position of PL feature with increasing of excitation power density has been attributed to a weakly type-II heterojunction formed between GaAs0.64Sb0.36 and GaAs.
The PR, CER, PzR and SPV spectra of GaAsSb/GaAsP and GaAsSb/GaAs/GaAsP QWs display a series of features originated from interband transitions which is a typical characteristic of type-I QW structure. Utilizing the experimentally deduced GaAsP conduction to light-hole and heavy-hole band gap energies, we can make an unambiguous determination in the barrier heights for the light-hole and heavy-hole wells. In order to identify the interband transitions, a calculation was performed based on the envelope function approximation using the conduction band band-offset Qc and strain compensation factor γ as adjustable parameters. The obtained values of Qc and γ are found to be Sb content dependent. The results indicate that the energy band of strain-compensated QW structure is significantly influenced by replacing GaAs barrier by GaAs0.79P0.21 layers, which changes the weakly type-II to a type-I structure. In addition, the effects of insert a GaAs layer between GaAsSb and GaAsP are discussed. The strain-compensated GaAsSb/GaAsP and GaAsSb/GaAs/GaAsP QWs have larger overlap integrals and hence higher transition probabilities, providing a possibility for fabricating high efficiency near infrared laser diodes.

目錄 中文摘要 ……………………………………………………………………………I 英文摘要 …………………………………………………………………………III 誌謝 ………………………………………………………………………………V 目錄 ……………………………………………………………………………VII 圖索引 …………………………………………………………………………… X 表索引 ………………………………………………………………………… XIII 第一章 緒論 ………………………………………………………………………01 第二章 量子井應力系統理論基礎……………………………………………11 2. 1半導體能帶結構的應力效應 …………………………………11 2. 2 應力層方形量子井能態分佈計算……………………………16 2. 3 次帶間光躍遷…………………………………………………… 20 2. 4 激子效應 …………………………………………………………22 第三章 光學量測方法與原理………………………………………………… 24 3. 1調制光譜理論與技術 ………………………………………… 24 3. 2反射率與介電函數的關係 ……………………………………26 3. 3 電場調制反射光譜………………………………………………28 3. 4 壓電調制反射光譜………………………………………………30 3. 5調制光譜系統實驗概述…………………………………………33 3. 5. 1調制光譜系統實驗架構 ………………………………34 3. 5. 2光反射調制光譜量測 …………………………………36 3. 5. 3無接點電場調制反射光譜量測………………………37 3. 5. 4壓電調制反射量測………………………………………38 3. 6光激發螢光光譜……………………………………………………40 3. 6. 1光激發螢光光譜原理 …………………………………40 3. 6. 2光激發螢光光譜量測……………………………………43 3. 7表面光電壓光譜 …………………………………………………44 3. 7. 1 表面光電壓原理 ………………………………………44 3. 7. 2 表面電子結構 …………………………………………45 3. 7. 3 表面光伏打效應 ………………………………………45 3. 7. 4 表面光電壓量測 ………………………………………46 3.8 電場與Franz-Keldysh Oscillation (FKO)振盪……………49 第四章 銻砷化鎵/砷化鎵量子井研究………………………………………51 4.1 GaAs1-xSbx材料參數………………………………………………51 4.2 銻砷化鎵/砷化鎵量子井結構…………………………………53 4.3 Ga1-xAsxSb/GaAs樣品製備………………………………………54 4.4 銻砷化鎵/砷化鎵之實驗結果……………………………………55 第五章 銻砷化鎵/磷砷化鎵量子井研究……………………………………71 5.1 銻砷化鎵/磷砷化鎵量子井介紹………………………………71 5.2 銻砷化鎵/磷砷化鎵量子井結構………………………………72 5.4 銻砷化鎵/磷砷化鎵之實驗結果…………………………………72 第六章 應力補償之銻砷化鎵/砷化鎵/磷砷化鎵研究……………………86 6.1應力補償量子井結構………………………………………………86 6.2 銻砷化鎵/砷化鎵/磷砷化鎵量子井介紹……………………87 6.3 Ga1-xAsxSb/GaAs/ Ga1-xAsxP量子井結構與能帶……………87 6.4 銻砷化鎵/砷化鎵/磷砷化鎵之實驗結果……………………88 第七章 結 論……………………………………………………………………… 94 參考文獻…………………………………………………………………………… 95

參考文獻

[1] H. C. Casey, Jr., and M. B. Panish, Heterostructure Lasers, Part A and B, Academic Press, Orlando, 1978.

[2] N. Holonyak, Jr., R. M. Kolbas, R. D. Dupuis, and P. D. Dapkus, “Quantum-well heterostructure lasers,” IEEE J. Quantum Electron. QE-16, pp.170-186(1980)

[3] D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot heterostructures, Wiley, New York, 2001.

[4] Koyama et al, Fumio, “Room temperature cw operation of GaAs vertical cavity surface emitting laser,” Trans. IEICE, E71(11), p. 1089-109 0(1988)

[5] K., S. Iga, Kinoshita, and F. Koyama, “Microcavity GaAlAs/GaAs Surface Emitting Laser with Ith = 6 mA,” Electron. Lett., No.3, Vol.23, pp.134-136(1987).

[6] J. L. Jewell, K.F. Huang, K. Tai, Y.H. Lee, R.J. Fischer, S.L. McCall, and A.Y. Cho, “Vertical Cavity Single Quantum Well Laser, ” Appl. Phys. Lett., Vol.55, No.5, pp.424-426(1989).

[7] K. J. Franz, W. O. Charles, A. Shen, A. J. Hoffman, M. C. Tamargo, and C. Gmachl, “ZnCdSe/ZnCdMgSe quantum cascade electroluminescence,” Appl. Phys. Lett. 92, 121105 (2008).

[8] T. H. Wu, Y. K. Su, Y. C. Lin, and Y. J. Wang, “Growth, Fabrication, and Characterization of InGaAsN Double Heterojunction Solar Cells,” Jpn. J. Appl. Phys. Vol. 50, 01AD07 (2011).

[9] A. Y. Cho, “Growth of Periodic Structures by Molecular Beam Method,” Appl. Phys. Lett. Vol.19, pp.467-470 (1971).

[10] G. W. Wicks, “Molecular Beam Epitaxy of III-V Semiconductors,” Critical Reviews in Solid State and Materials Science Vol. 18, pp.239-243(1993).

[11] W. C. Chen, Y. K. Su, R. W. Chuang, and S. H. Hsu. “Investigation of the Optical Properties of InGaAs(N):(Sb) Quantum Wells Grown by Metal Organic Vapor Phase Epitaxy.” J. Vac. Sci. Technol., Vol. 24, No. 3, pp. 591-594 (2006).

[12] H. P. Hsu, J.K. Huang, Y.S. Huang, Y.T. Lin, H.H. Lin, K.K. Tiong, “Optical study of GaAs1−xSbx layers grown on GaAs substrates by gas-source molecular beam epitaxy,” Mat. Chem. and Phys., Vol. 124, pp.558-562(2010) .

[13] S. Adachi, Physical Properties of Ⅲ-Ⅴ Semiconductor Compounds, John Wiley and Sons, New York (1992).

[14] P. Y. Yu, M. Cardona, Fundamentals of Semiconductors, Springer, New York (1996) P462

[15] L. A. Coldren, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, John Wiley and Sons, New York, 1992.

[16] E. Yablonovitch, and E. O. Kane, “Reduction of Lasing Threshold Current Density by the Lowering of the Valence Band Effective Mass,” J. Lightwave Tech.,Vol.LT-4, pp.504-506(1986).

[17] E. Yablonovitch, and E. O. Kane, “Band Structure Engineering of Semiconductor Lasers for Optical Communication,” J. Lightwave Tech., Vol.6, pp.1929-1931 (1986)

[18] A. R. Adams, M. Asada and Y. Suematsu, “The Temperature Dependence of the Efficiency and Threshold Current of InGaAsP Lasers Related to Intervalence Band Absorption,” Jpn. J. Appl. Phys., Vol.19, pp.L621-L624(1980).

[19] M. A. Asada, Kameyama and Y. Suematsu, “Gain and Intervalence Band Absorption in Quantum Well Lasers,” IEEE J. Quantum Electron, Vol.QE-20, pp.745-753(1984).

[20] L. C. Chiu, and A. Yariv, “Auger Recombination in Quantum Well InGaAsP Heterostructure Lasers,” IEEE J. Quantum Electron.,Vol. QE-18, pp.1406-1409(1982).

[21] N. K. Dutta, “Calculation of Auger Rate in Quantum Well Structure and its Application to InGaAsP Quantum Well Lasers,” J. Appl. Phys., Vol.54, pp.1236-1245(1983).

[22] T. H. Kamijoh, Horikawa and Y. Matsui, “Improved Operation Characteristics of Long-wavelength Lasers Using Strained MQW Active Layers,” IEEE J. Quantum Electron., Vol.30, No.2, pp.524-532(1994).

[23] M., K. Nido, Naniwae and J. Shimizu, “Analysis of Differential Gain in InGaAs-InGaAsP Compressive and Tensile Straned Quantum Well Lasers and its Application for Estimation of High-speed Modulation Limit,” IEEE J. Quantum Electron., Vol.29, pp.885-895(1993).

[24] S. W. Ryu, Il-Kyo Ki and W. G. Jeong, “Theoretical Investigation of Gain and Linewidth Enhancement Factor for 1.55-μm Tensile Strained Quantum-well Lasers,” J. Lightwave Tech., Vol.15, No.4, pp.711-716(1997).

[25] R. F. Henderson, Walters and C. L. Reynolds, “Structural and Optical Characterization of Strained and Strain-compensated InGaAsP/InP Quantum Well Laser,” J. Cryst. Growth, Vol.194, pp.8-15(1998).

[26] A. Jaeger, W. D. Sun and F. H. Pollak, “Characterization of p-dopant Interdiffusion in 1.3 μm InGaAsP/InP Laser Structures Using Modulation Spectroscopy,” J. Appl. Phys., Vol.86, No.4, pp.2020-2024(1999)

[27] Z. L. Pan, H. Li, Y. W. Lin, “Conduction Band Offset and Electron Effective Mass in GaInNAs/GaAs Quantum-well Structures with Low Concentration,” Appl. Phys. Lett., Vol.78, No.15, pp.2217-2219 (2001).

[28] M. Hetterich, and M. D. Dawson, “Electronic States and Band Alignment in GaInNAs/GaAs Quantum-well Structures with Low Nitrogen Content,” Appl. Phys. Lett., Vol.76, No.9, pp.1030-1032 (2000).

[29] S. A. Choulis, and T. J. Hosea, “Influence of Varying N-environments on the Properties of (GaIn)(Nas) Vertival-cavity Surface-emitting Lasers,” Appl. Phys. Lett., Vol.79, No.26 pp.4277-4279(2001).

[30] H. P. Xin, and C. W. Tu, “GaInNAs/GaAs Multiple Quantum Wells Grown by Gas-source Molecular Beam Epitaxy,” Appl. Phys. Lett., Vol.72, No.19, pp.2442-2444(1998).

[31] C. S. Peng, T. Jouhti, P. Laukkanen and E.-M. pavelescu, “1.3-μm GaInNAs-GaAs Laser with a Low Threshold Current Density,” IEEE Photonics Thchnology Letters, Vol.14, No.3, pp. 275-277(2002).

[32] X. Yang, M. J. Jurkovic, J. B. Heroux, W. I. Wang, “Molecular beam epitaxial growth of InGaAsN:Sb/GaAs quantum wells for long-wavelength semiconductor lasers,” Appl. Phys. Lett., Vol.75, No.2, (1999).

[33] T. Anan, K. Nishi, S. Sugou, M. Yamada, K. Tokutome and A. Gomyo, “GaAsSb: A novel material for 1.3μm VCSELs,” Electronics Lett. 34, 2127 (1998)

[34] B. O. Seraphin, “The Effect of an Electric Field on the Reflectivity of Germanium,” Proc. 7th Int. Conf. Phys. Semicond., ed. By M. Hulin, Academic, Dunod, Paris (1964).

[35] M. Cardona, Modulation Spectroscopy, Academic Press, New York, (1969).

[36] Y. Hamakawa, and T. Nishino “Optical Properties Solids: New Developments,” North-Holland, Amsterdam, p.255 (1970)

[37] D. E. Aspnes, in Handbook on Semiconductors, Vol. 2, ed. M. Balkanski, North-Holland, New York, p.109 (1980).

[38] F. H. Pollak, “Modulation Spectscopy Under Uniaxial Stress,” Surf. Sci. Vol.37, pp.836-895(1973).

[39] B. O. Seraphin, in Semiconductors and Semimetals, Vol.2, eds. R. L. Willardson and A. C. Beer, Academic, New York, pp.1-149(1972).

[40] Y. S. Huang, H. Qiang and F. H. Pollak, “Electroreflectance Study of a Symmetrically Coupled GaAs/Ga0.77Al0.23As Double Quantum Well System,” J. Appl. Phys., Vol.70, pp.3808-3814(1991).

[41] H. Mathieu, J. Allegre and B. Gil, “Piezomodulation Spectroscopy : a Powerful Investigation Tool of Heterostructures,” Phys. Rev. B, Vol.43, pp.2218-2227(1991).

[42] C. H. Ho, H. W. Lee, and Z. H. Cheng, 2004/4, “Practical Thermo- reflectance Design For Optical Characterization of Layer Semiconductors”, Rev. Sci. Instrum., Vol. 75, pp. 1098-1102.

[43] J. I. Pankove, "Optical Processes in Semiconductors", Dover, New York (1975).

[44] Y. Yin, H. M. Chen, F. H. Pollak, Y. Chen, P. A. Montano, J. M. Woodall, P. D. Kirncher, and D. Pettit, Proceedings of the 20th International Conf. on the Phys. of Semiconductors, Greece,(1990).

[45] F. H. Pollak, “Effects of Homogeneous Strain on the Electronic and Vibrational Levels in Semiconductors and Semimetals, Vol.32, pp.17-53(1990).

[46] S. L. Chuang, Physics of Optoelectronic Devices, John Wiley and Sons, New York, 1995.

[47] O. J. Glembocki, and B. V. Shanabrook, “Electro-modulation Spectroscopy of Confined Systems,” Superlatt and Microstruct, Vol.5, pp.603-607(1989).

[48] B. V. Shanabrook, O. J. Glembocki and W. T. Breard, “Photoreflectance Modulation Mechanisms in GaAs/AlxGa1-xAs Multiple Quantum Wells,” Phys. Rev. B, Vol.35, pp.2540-2543(1986).

[49] Y. S. Huang, H. Qiang and F. H. Pollak, “Electroreflectance Study of a Symmetrically Coupled GaAs/Ga0.77Al0.23As Double Quantum Well System,” J. Appl. Phys., Vol.70, pp.3808-3814(1991).

[50] H. Mathieu, J. Allegre and B. Gil, “Piezomodulation Spectroscopy : a Powerful Investigation Tool of Heterostructures,” Phys. Rev. B, Vol.43, pp.2218-2227(1991).

[51] C. P. Kuo, S. K. Vong and R. M. Cohen, “Effect Mismatch Strain on Band Gap Ⅲ-Ⅴ Semiconductors,” J. Appl. Phys., Vol.57, pp.5428- 5432(1985)

[52] H. Mathieu, P. Lefebvre and J. Allegre, “Differential Spectroscopy of GaAs-AlGaAs Quantum Wells : An Unambiguous Identification of Light-hole and Heavy-hole States,” Phys. Rev. B, Vol.36, pp.6581- 6584(1987).

[53] J. R. Vurgaftman, Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys., vol. 89, pp. 5819-5875, 2001

[54] P. Sitarek, H. P. Hsu, Y. S. Huang, J. M. Lin, H. H. Lin, and K. K. Tiong, “Optical studies of Type-I GaAs1-xSbx/GaAs multiple quantum well structures,” J. Appl. Phys., vol. 105, pp. 123523-1∼123523-4, 2009.

[55] Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, “Properties of photo- luminescence in Type-II GaAsSb/GaAs multiple quantum wells,” J. Appl. Phys., vol. 92, pp. 5810-5813, 2002.

[56] T. T. Chen, C. H. Chen, W. Z. Cheng, W. S. Su, M. H. Ya, Y. F. Chen, P. W. Liu, and H. H. Lin, “Optical studies of strained Type-II GaAs0.7Sb0.3/ GaAs multiple quantum wells,” J. Appl. Phy., vol. 93, pp. 9655-9658, 2003.

[57] R., D. Teissier, Sicault, J. C. Harmand, G. Ungaro, G. L. Roux, and L. Largeau, “Temperature-dependent valence band offset and band-gap energies of pseudomorphic GaAsSb on GaAs,” J. Appl. Phys., vol. 89, pp. 5473-5477, 2001.

[58] M. Dinu, J. E. Cunningham, F. Quochi, and J Shah, “Optical properties of strained antimonide-based heterostructures,” J. Appl. Phys., vol. 94, pp. 1506-1512, 2003.

[59] C. M. Lin, and Y. F. Chen, “Properties of photoluminescence in Type-II ZnMnSe/ZnSeTe multiple quantum wells,” Appl. Phys. Lett., vol. 85, pp. 2544-2546, 2004.

[60] S. R. Johnson, C. Z. Guo, S. Chaparro, Y. G. Sadofyev, J. Wang, Y. Cao, N. Samal, J. Xu , S. Q. Yu, D. Ding, and Y. H. Zhang, “GaAsSb/GaAs band aligment evaluation for long-wave photonic applications,” J. Cryst. Growth, vol. 251, p.p 521-525, 2003.

[61] Yaguchi, H., X. Zhang, K. Ota, M. Nagahara, K. Onabe, Y. Shiraki, and R. Ito, “ Photoreflectance study of GaAs/GaAsP strained-barrier quantum well Structures,” Jpn. J. Appl. Phys., vol. 32, pp. 544-547, 1993.

[62] K. H. Sim, C.Y. Chan, and E. Li, “Optical properties of tensile-strained barrier GaAsP/GaAs intermixed quantum well structure,” SPIE , vol. 3625, pp. 544-547, 1993.

[63] L. Malikova, F. H. Pollak, O. Gorea, and A. Korotcov, “Modulation spectroscopy study of a strained layer GaAs/GaAsP multiple quantum well structure,” J . Electron. Mater., vol. 29, pp. 1346-1350, 2000.

[64] Y. P. Varshni, “Temperature Dependence of the Energy Gap in Semiconductors,” Physica, Vol. 34, pp.149-154(1967)

[65] M. S. Noh, R. D. Dupuis, D. P. Bour, G. Walter and N. Holonyak, “Long- wavelength strain-compensated GaAsSb quantum-well heterostructures laser grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 83, no. 13, pp. 2530-2532, Sep. 2003.

[66] P. Dowd, S. R. Johnson, S. A. Feld, M. Adamcyk, S. A. Chaparro, J. Joseph, K. Hilgers, M. P. Horning, K. Shiralagi and Y. H. Zhang, “Long wavelength GaAsP/GaAs/GaAsSb VCSELs on GaAs substrates for communications applications,” Electron. Lett., vol. 39, no. 13, pp. 987-988, June 2003.

[67] Harmand, C., G. Ungaro, J. Ramos, E. V. K. Rao, G. Saint-Girons, R. Teissier, G. Le Roux, L. Largeau and G. Patriarche, “Investigations on GaAsSbN/GaAs quantum wells for 1.3–1.55μm emission,” J. Cryst. Growth, vol. 227/228, pp. 553-557, July 2001.

[68] H. C. Kuo, Y. H. Chang, Y. A. Chang, F. I. Lai, J. T. Chu, M. Y. Tsai and S. C. Wang, “Single-Mode 1.27μm InGaAs:Sb-GaAs-GaAsP Quantum Well Vertical Cavity Surface Emitting Lasers,” IEEE J. Sel. Top. Quantum Electron., vol. 11, no. 1, pp. 121-126, 2005.

[69] M. Yamada, et.al, “High-performance 1.3-μm VCSELs with GaAsSb/ GaAs quantum wells,” in 14th Meet. IEEE Laser Electro-Opt. Soc., vol. 2, pp. 598-599, 2001.

無法下載圖示 全文公開日期 2016/08/01 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE