簡易檢索 / 詳目顯示

研究生: 羅祖嘉
Zu-Jia Lo
論文名稱: 適用於生醫應用之可編程高功率效能之緩衝放大器電路設計
The Design of Reconfigurable Power-Efficient Buffer Amplifiers for Biomedical Applications
指導教授: 彭盛裕
Sheng-Yu Peng
口試委員: 陳怡然
Yi-Jan Chen
翁若敏
Weng, Ro-Min
鍾勇輝
Yung-Hui Chung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 76
中文關鍵詞: 生醫應用緩衝放大器電流自主調整
外文關鍵詞: Biomedical application, Buffer amplifier, Autonomous current adaptation
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文提出兩個適用於生理訊號感測之類比前端電路中的緩衝放大器。兩者皆使用懸浮閘電晶體編程技術來提供電路的可重構性, 以達到在不同應用情境下皆能符合需求。而在電路架構的發展上,兩者都使用新提出之全電容回授式架構搭配可調動之輸出直流位準及輸入偏移電壓消除能力。其閉迴路增益可透過切換回授電容調整,且不影響電路的輸出直流位準。至於在核心的放大器設計上,研究團隊發展由多種具有AB類電壓電流特性之電路所組成的超級AB類架構,使這兩個緩衝放大器整體供應電流可以隨著輸入訊號的特性自動做出調整,且不需要額外的感測或控制電路。當所接收到的輸入訊號頻率較快或是有突然的大振幅變化時,電路的供應電流會自動上升來提供足夠的迴轉率。而當所接收到的輸入訊號頻率較慢或是當電路輸出達到平衡穩態時,電路的供應電流會自動往靜態的低電流方向下降。也正因為所提出的兩種緩衝放大器都有著上述供應電流自動的調整能力,相當合適應用於處理如生理信號般具有突波變化特性的輸入訊號。
所提出的第一個緩衝放大器被設計用以驅動晶片外之量測儀器,並採用差動輸入轉單端輸出的组態以符合大部分量測儀器都為單端輸入的情況。而在放大器設計上,採用二階組態的超級AB類架構,來確保在不管電容或是電阻式負載時都有足夠的驅動能力。此電路已在0.35 μm 的CMOS 製程下完成晶片下線,其面積為0.109mm2。量測結果顯示該電路具有可調整之閉迴路增益以及輸出入皆有軌對軌的信號擺幅範圍。在1 nF 的電容負載情況下,達到100 kHz 的增益頻寬積的同時,消耗的功耗為25.35 μW,而所量測到的輸入三階截斷點為39.21 dBV,迴轉率為0.5 V/ μs。
而本篇論文所提出的第二個緩衝放大器,則是被設計來做為循序漸進式類比數位轉換器的輸入驅動電路。由於僅有電容式負載需要驅動,在內部放大器的架構則選用具AB類電流電壓特性的單級伸縮疊接阻態來達成更低的功率消耗。其概念驗證的晶片已在0.35 μm 的CMOS 製程下完成電路模擬和下線。此晶片具有閉迴路增益從6 dB 到36 dB 的切換範圍,而在1.2 pF 的電容負載下,模擬結果顯示達到1.28 MHz 的單增益頻寬下,所需消耗的功率消耗僅12.5 μW。此外電路的線性度模擬結果顯示在輸出擺幅為2.4Vpp 其總諧波失真為87 dB, 另外在two tone test 情況下所計算出之輸入三階截斷點為26.51 dBV。而在步階響應的模擬中所得到的平均迴轉率為5.043 V/ μs。


Two powerefficient
buffer amplifiers utilized in biomedical sensing analog front-end (AFE) chain are proposed in this thesis. Floating gate transistors technique is employed
in both of them to provide circuit reconfigurability to meet requirements under different application. Fully capacitive feedback topology with adjustable output DC level and input offset trimming function are adopted as their main structure. Closed-loop gain for both of them is adjustable and output DC level is independent with gain setting. As for the core amplifier design, super class-AB
architecture with multiple class-AB techniques has been developed to provide the ability of autonomous supply current adaptation according to the characteristic of input signal. Without extra sensing and control circuit, the current consumption of these buffer amplifiers increase spontaneously to provide sufficient slew rate when the input frequency is high or when input signal has a large abrupt change. The supply current dwindles back to low quiescent levels autonomously when the input is slow or when the output voltage reaches equilibrium. Since current consumption is adaptive to both frequency and amplitude of input signal, they are suitable to process physiological
signals with spike-like characteristic.

The proposed first buffer amplifier is design for driving subsequent measurement instrument. This buffer develops a differential to single-ended
configuration ,and the core amplifier adopts two-stage super class-AB architecture to provide sufficient driving capabilities for both resistive and capacitive loads . Those characteristics are indispensable to transmit signals to off-chip. A concept proving chip has been designed and manufactured
in a 0.35 μm CMOS process occupying an area of 0.109 mm2 with variable gain and rail-to-rail input and output swing ranges. When measured under 1 nF capacitor loading, it consumes 25.35 μW to achieve gainbandwidth
product of 100 kHz with measured IIP3 of 39.21 dBV and a slew rate of 0.5 V/ μs.

The second buffer amplifier with fully differential configuration are proposed as input driver circuit of subsequent ADC. Since only capacitive loading need to drive, the core amplifier adopts a class-AB single stage telescope topology for more power saving. A concept proving chip has been designed and fabricated in a 0.35 μm CMOS process with variable gain option from 6 dB to 36 dB. The proposed buffer amplifier is simulated under lowest gain and 1.2 pF ADC Capacitor array as loading. The unit gain bandwidth is programmed to 1.28 MHz with static power consumption is 12.5 μW. The linearity performance shows that total harmonic distortion is 87 dB with 2.4Vpp output swing, and extracted IIP3 is 26.51 dBV under two tone test. The simulating step response shows that average slew rate is 5.043 V/ μs.

Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 PowerEfficient Buffer Amplifier in FloatingGatedBased Analog Frontend System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 FloatingGate Technology in Analog Integrated Circuits . . . . . . . . . 3 1.2.1 Introduction of Floating Gate . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Mechanism of Charge Programming of floating . . . . . . . . . . 6 2 A PowerEfficient DifferentialtoSingleEnded Autonomous Current Adaptation Buffer Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Proposed DifferentialtoSingleended Autonomous Current Adaptation Buffer Amplifier (ACABA) . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Topology Evolution . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.2 Super ClassAB Operational Amplifier . . . . . . . . . . . . . . 20 2.2.3 Principle of Operation . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1 SmallSignal Equivalent Circuit and ClosedLoop Analysis . . . . 27 2.3.2 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.3 Noise Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.4 Slew Rate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 Floating Gate Programming Circuity and Procedure . . . . . . . . . . . . 31 2.5 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5.1 Bandwidth and Gain Programmability . . . . . . . . . . . . . . . 36 2.5.2 Slew Rate and Settling Time . . . . . . . . . . . . . . . . . . . . 39 2.5.3 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.5.4 Biological Signal Measurement Results . . . . . . . . . . . . . . 43 2.5.5 Figures of Merit and Comparison . . . . . . . . . . . . . . . . . 45 2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3 A FullyDifferential Buffer Amplifier as Input Driver of SAR ADC . . . . . . . 49 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3 Proposed Driver Circuit Implementation . . . . . . . . . . . . . . . . . . 54 3.3.1 Fully Capacitive Feedback Architecture . . . . . . . . . . . . . . 54 3.3.2 Super ClassAB Operational Transconductance Amplifier . . . . 55 3.3.3 Floating Gate Techniques in OTA Design . . . . . . . . . . . . . 57 3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4.1 Gain and Bandwidth Programmability . . . . . . . . . . . . . . . 60 3.4.2 Step Response . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.3 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.5 Comparison and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 64 4 Contribution and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

[1] B. A. Minch, “A low voltage MOS cascode bias circuit for all current levels,” in IEEE Proceedings of the International Symposium on Circuits and Systems, May
2002.
[2] T.Y.Wang, M.R. Lai, C. M. Twigg, and S.Y.Peng, “A fully reconfigurable low noise biopotential sensing amplifier with 1.96 noise efficiency factor,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 3, pp. 411 – 422, 2014.
[3] T.Y. Wang, L.H. Liu, and S.Y.Peng, “Power efficient highly linear reconfigurable biopotential sensing amplifier using gate balanced pseudoresistors,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 62 no. 2, pp. 199 – 203, 2015.
[4] S.Y. Peng, Y.H. Lee, T.Y.Wang, H.C. Huang, M.R. Lai, C.H. Lee, and L.H.
Liu, “A power efficient reconfigurable OTAC
filter for low frequency biomedical applications,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 65, no. 2, pp. 543 – 555, 2018.
[5] S.Y. Peng, L.H. Liu, P.K. Chang, T.Y. Wang, and H.Y.Li, “A power efficient
reconfigurable output capacitorless low dropout regulator for low power
analog sensing front-end,” IEEE Transactions on Circuits and Systems I: Fundamental Theory
and Applications, vol. 64, no. 6, pp. 1318 – 1327, 2017.
[6] V. Srinivasan, G. J. Serrano, J. Gray, and P. Hasler, “A precision CMOS amplifier using floating gate transistors for offset cancellation,” IEEE Journal of Solid–State Circuits, vol. 42, no. 2, pp. 280–291, 2007.
[7] S.Y. Peng, M. S. Quershi, P. E. Hasler, A. Basu, and F. L. Degertekin, “A charge based low-power high SNR capacitive sensing interface circuit,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 55, pp. 1863– 1872, 2008.
[8] S. B. Prakash and P. Abshire, “A fully differential rail-to-rail CMOS capacitance sensor with floating gate trimming for mismatch compensation,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 56, no. 5,pp. 975 – 986, 2009.
[9] G. Serrano and P. Halser, “A precision low TC wide range CMOS current reference,” IEEE Journal of Solid–State Circuits, vol. 43, no. 2, pp. 558–565, 2008.
[10] E. Ozalevli, H.J.Lo, and P. Hasler, “Binary weighted
digital to analog converter design using floating gate voltage references,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 55, no. 4, pp. 990–998, 2008.

[11] R. Chawla, F. Adil, G. Serrano, and P. E. Hasler, “Programmable Gm–C filters
using floating gate operational transconductance amplifiers,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 54, no. 3, pp. 481– 491, 2007.
[12] P. E. Hasler., B. A. Minch, and C. Diorio, “An autozeroing floatinggate
amplifier,”IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, no. 1, pp. 74 – 82, 2001.

[13] K.J.de Langen and J. H. Huijsing, “Compact low voltage power efficient operational amplifier cells for VLSI,” IEEE Journal of Solid–State Circuits, vol. 33, no. 10, pp. 1482–1496, 1998.
[14] J.Ramirez Angulo, R.G.Carvajal, J. A. Galan, and A. LopezMartin,
“A free but efficient low voltage
class-AB two-stage operational amplifier,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 53, no. 7, pp. 568–571, 2006.
[15] P. R. Surkanti and P. M. Furth, “Converting a three stage pseudo class-AB amplifier to a true class-AB amplifier,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 59, no. 4, pp. 229–233, 2012.
[16] C. G.Alberdi, J. A.Ruiz, A. J. L.Martin, and J. R.Angulo, “Micropower class-AB VGA with gain independent bandwidth,” IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, vol. 60, no. 7, pp. 397–401, 2013.
[17] F. E.Alfaro, S. Pennisi, G. Palumbo, and A. J. L.Martin, “Low power class-AB
CMOS voltage feedback current operational amplifier with tunable gain and bandwidth,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, vol. 61, no. 8, pp. 574–578, 2014.
[18] E. C.Bernal, S. Pennisi, A. D. Grasso, A. Torralba, and R. G. Carvajal, “0.7V three stage class-AB CMOS operational transconductance amplifier,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 63, no. 11, pp. 1807–1815, 2016.
[19] M. Degrauwe, J. Rijmenants, E. A. Vittoz, and D. Man, “Adaptive biasing CMOS
amplifier,” IEEE Journal of Solid–State Circuits, vol. SC-17, no. 3, pp. 522–528,
1982.
[20] R. Castello and P. R. Gray, “A high performance micropower switched capacitor filter,",” IEEE Journal of Solid–State Circuits, vol. SC-20,
no. 6, pp. 1122–1132,1985.
[21] R. Kline, B. J. Hosticka, and H. J. Pfleiderer, “A very high slew rate CMOS operational amplifier,” IEEE Journal of Solid–State Circuits, vol. 24, no. 3, pp. 744–76,1989.
[22] L. Callewaert and W. Sansen, “Class AB CMOS amplifiers with high efficiency,” IEEE Journal of Solid–State Circuits, vol. 25, no. 6, pp. 684–691, 1990.
[23] R. Harjani, R. Heineke, and F. Wang, “An integrated low voltage class AB CMOS OTA,” IEEE Journal of Solid–State Circuits, vol. 34, no. 2, pp. 134–142, 1999.
[24] A. J. L.Martin, S. Baswa, J. R.Angulo, and R. G.Carvajal, “Low voltage super class-AB CMOS OTA cells with very high slew rate and power efficiency,” IEEE
Journal of Solid–State Circuits, vol. 40, no. 5, pp. 1068–1077, 2005.
[25] B. A. Minch, “A simple class-AB transconductor in CMOS,” in IEEE Proceedings
of the International Symposium on Circuits and Systems, May 2008.
[26] B. A. Minch, “An inverted CMOS class-AB transconductor featuring railtorail
common mode input range and constant transconductance gain,” in IEEE Proceedings
of the Biomedical Circuits and Systems Conference, Oct. 2014.
[27] A. L.Martin, M. P. Garde, J. M. Algueta, C. A. C. Blas, R. G. Carvajal, and J. R.Angulo, “Enhanced single stage folded cascode OTA suitable for large capacitive loads,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 65, no. 4, pp. 441–445, 2018.
[28] M. P. Garde, A. J. Lopez Martin, R. G. Carvajal, and J. Ramirez Angulo,
“Super class-AB recycling folded cascode OTA,” IEEE Journal of Solid–State Circuits,vol. 53, no. 22, pp. 2614–2623, 2018.
[29] D. Du and K. M. Odame, “A bandwidth adaptive pre-amplifier,” IEEE Journal of
Solid–State Circuits, vol. 48, no. 9, pp. 2142–2153, 2013.
[30] E. Sckinger and W. Guggenbhl, “A versatile building block: The CMOS differential difference amplifier,” IEEE Journal of Solid–State Circuits, vol. 22, no. 2, pp. 287–294, 1987.
[31] R. S. Assaad and J. SilvaMartinez, “The recycling folded cascode: A general enhancement of the folded cascode amplifier,” IEEE Journal of Solid–State Circuits, vol. 44, no. 9, pp. 2535–2542, 2009.
[32] T. Delbruck, “Bump circuits for computing similarity and dissimilarity of analog voltage,” in IEEE Proceedings of the International Neural Network Society, pp. 475–479, Oct. 1991.
[33] F. Bahmani and E. SánchezSinencio, “A highly linear pseudodifferential
transconductance,”in Proceedings of European Solid State Circuits Conference, p. 111–114, 2004.
[34] R. Assaad and J. SilvaMartinez, “Enhancing general performance of folded cascode amplifier by recycling current,” IEEE Electronics Letters, vol. 43, no. 23, 2007.
[35] A. Basu, S. Brink, C. Schlottmann, S. Ramakrishnan, C. Petre, S. Koziol, F. Baskaya, C. M. Twigg, and P. Hasler, “A floatinggatebased
field programmable analog array,” IEEE Journal of Solid–State Circuits, vol. 45, no. 9, pp. 1781–1794, 2010.
[36] S.Y. Peng, P. E. Hasler, and D. V. Anderson, “An analog programmable multidimensional radial basis function based classifier,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 54, pp. 2148–2158, 2007.
[37] “Texas Instruments LMP8350, ultra low distortion fully differential precision ADC driver with selectable power modes. http://www.ti.com/product/LMP8350.
Accessed: 20200225.
[38] M. R. V. Bernal, S. Celma, N. Medrano, and B. Calvo, “An ultralowpower
low voltage class-AB fully differential op-amp for long life autonomous portable equipment,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 59, no. 10, pp. 643–647, 2012.
[39] A. D. Sundararajan and S. M. R. Hasan, “Quadruply split cross driven
doubly recycled gm doubling recycled folded cascode for microsensor instrumentation amplifiers,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 63, no. 6, pp. 543 – 547, 2016.
[40] D. Ilker, C. Tino, K. Sayfe, B. Bertan, J. S. Soo, and C. Junseok, “A MEMs based power scalable hearing aid analog front end,” IEEE transactions on biomedical circuits and systems, vol. 5, no. 3, pp. 201–213, 2010.
[41] H. Z and Y. L, “A low power dynamic range relaxed analog front end for wearable heart rate and blood oximetry sensor,” IEEE Sensors Journal, vol. 19, no. 19,pp. 8387–8392, 2018.
[42] G.G. Turcotte, M. N. Khiarak, C. Ethier, Y. D. Koninck, and B. Gosselin, “A 0.13um CMOS SoC for simultaneous multichannel optogenetics and neural recording,”
IEEE Journal of Solid State Circuits, vol. 53, no. 11, pp. 3087–3100, 2018.
[43] Y. Zhao, Z. Shang, and Y. Lian, “A 2.55 NEF 76 dB CMRR DC coupled
fully differential difference amplifier based analog front end for wearable biomedical sensors,” IEEE Transactions on Biomedical Circuits and Systems, vol. 13, no. 5, pp. 918–926,2019.
[44] M. Takhti., Y. C. Teng., and K. Odame., “A 10 MHz readout
chain for electrical impedance tomography,” IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 1, pp. 222 – 230, 2018.
[45] M. Takhti. and K. Odame., “A power adaptive, 1.22pW/Hz, 10MHz readout
frontend for bioimpedance measurement,” IEEE Transactions on Biomedical Circuits
and Systems, vol. 13, no. 4, pp. 725 – 734, 2019.
[46] C. R. Grace and a. P. D. T. Stezelberger, “Petal: A multichannel differential ADC driver for high speed CMOS image sensors,” IEEE Transactions on Nuclear Science, vol. 66, no. 6, pp. 955–959, 2019.
[47] K. S. Rakshitdatta, Y. Mitikiri, and N. Krishnapura, “A 12.5 mW, 11.1 nV/Hz, 115 dB THD, < 1 us settling, 18 bit SAR ADC driver in 0.6um CMOS,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 5, pp. 443–447, 2016.

無法下載圖示 全文公開日期 2025/08/31 (校內網路)
全文公開日期 2025/08/31 (校外網路)
全文公開日期 2025/08/31 (國家圖書館:臺灣博碩士論文系統)
QR CODE