簡易檢索 / 詳目顯示

研究生: 盧昱程
Yu-Cheng Lu
論文名稱: 高功率效能之可變增益緩衝放大器與適用於生醫應用之可編程雙通道類比感測前端電路設計
The Circuit Design of A Power Efficient Variable Gain Buffer Amplifier And Reconfigurable Dual Channel Analog Front-End for Biomedical Applications
指導教授: 彭盛裕
Sheng-Yu Peng
口試委員: 鄭桂忠
Kea-Tiong Tang
林淵翔
Yuan-Hsiang Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 117
中文關鍵詞: 懸浮閘低功耗類比前端電路緩衝放大器生醫應用
外文關鍵詞: Floating-Gate, Low Power, Analog Front-End, Buffer Amplifier, Biomedical Applications
相關次數: 點閱:346下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出適用於生醫應用之高功率效能雙通道類比前端感測電路設計並
    且使用懸浮閘編程技術,在類比前端的每個通道之電路包含了一個低雜訊放大
    器、一個可變增益放大器、兩個可重組化雙二階濾波器和一個緩衝放大器。懸浮
    閘電晶體被用來實現可編程電流源、共模回授電路與可編程線性偽電阻,並達到
    低雜訊、高線性度與低功率消耗。由於電流源是可編程的,電路頻寬很容易地根
    據不同的物理訊號感測之應用做調整,像是偵測人體之心電圖、腦波圖和肌電
    圖。所提出的類比前端電路以0.35微米互補式金氧半製程所製造,它的面積為
    6.88毫米平方公分。為了防止濾波器影響低頻訊號的靈敏度,所設計的感測通道
    包含了低雜訊放大器和可變增益放大器,在205奈安培的電流消耗之下,達到了
    116赫茲的高頻截止點與0.8赫茲的低頻截止點。中頻增益的設計範圍從55.35分
    貝至81.58分貝。在積分從0.5赫茲到100千赫茲之下,所測量的輸入參考雜訊電
    壓為2.43微均方根伏特。雜訊效率因素為3.94。在低增益設定之下,總斜坡失真
    為-58.34分貝且輸出峰對峰值為1.136伏特。
    由於可變增益放大器採用T 型網路去實現小回授電容值,為了達到一個低頻
    截止點,回授偽電阻值會大於位於低雜訊放大器的阻值數倍。為了改善這項缺點,
    這個可變增益放大器被重新設計,且透過採用原始結構的緩衝放大器。由於使用
    懸浮閘之具有增強迴轉率的AB類輸入級,相比於傳統運算放大器之下線性度被
    改善。頻寬和閉迴路增益都可調整,需透過懸浮閘電流源與切換不同回授電容的
    數量。被改善後的緩衝放大器被設計與製造在0.35微米互補式金氧半製程,佔據
    的矽面積為0.084毫米平方公分。在100千赫茲、500千赫茲與1兆赫茲情況之
    下,電流消耗分為5.9微安培、38微安培與124.8微安培。所測量到的三階輸入
    截止點在28.7分貝伏特以上,總諧波失真在低增益設定時為-82.6分貝之下。


    This thesis presents the design of power-efficient dual channel analog front-end (AFE) circuits for biomedical applications based on floating-gate programming technologies. The circuits in each channel of the analog front-end include a low noise amplifier (LNA), a variable gain amplifier (VGA), two reconfigurable biquadratic filter sections, and a buffer amplifier (BA). Floating-gate transistors are employed to implement programmable current sources, common-mode feedback, and programmable linear pseudo resistors, achieving low noise and high linearity with low power consumption. Since the bias current level is programmable, the bandwidth of the circuits can be easily tuned to fit into a variety of physiological signal sensing applications, such as the electrocardiogram (ECG), electroencephalogram
    (EEG), and electromyogram (EMG) from human bodies. The proposed AFE was fabricated in a 0.35μm CMOS process, and its area is 6.88mm2. To prevent that the filter impacts the sensitivity of the low frequency signal, the designed sensing
    channel includes the LNA and the VGA, achieving 116Hz of the high frequency cutoff
    point and 0.8Hz of the low frequency cutoff point under 205nA of current consumption. The midband gain is designed from 55.35dB to 81.58dB. The measured input referred noise voltage is 2.43Vrms integrated from 0.5Hz to 100kHz. The noise efficiency factor (NEF) is 3.94. The total harmonic distortion (THD) is -58.34dB with 1.136V of the output peak-to-peak voltage in the low gain set.

    Since the variable gain amplifier employs T-network to implement the small feedback
    capacitance, the feedback pseudo resistance should be several times larger than that in LNA to achieve a low frequency cutoff point. To improve this drawback, the variable gain amplifier is redesigned by employing the original structure of the buffer amplifier. Compared with conventional operational amplifier, the linearity is improved because of the floating-gate based class-AB input stage with enhanced slew rate. The bandwidth and the closed-loop gain are both reconfigurable through programming the floating-gate current source and switching different amount of feedback capacitors. The improved buffer amplifier was designed and fabricated in a 0.35μm CMOS process occupying a silicon area of 0.084mm2. The current consumptions under 100kHz, 500kHz, and 1MHz conditions are 5.9μA, 38μA, and 124.8μA, respectively. The measured IIP3 is above 28.7dBV, and the THD is below -82.6dB in the low gain set.

    Contents Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Analog Front-End for Biomedical Applications . . . . . . . . . . . . . . 3 1.3 Floating-Gate Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Proposed Analog Front-End Circuits . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 A Fully Reconfigurable Low-Noise Biopotential Sensing Amplifier Design 7 2.1.1 Reconfigurable Feedback Pseudo Resistor . . . . . . . . . . . . . 8 2.1.2 Floating-Gate Operational Transconductance Amplifier . . . . . . 10 2.1.3 Noise Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 A Fully Reconfigurable Variable Gain Amplifier with T-Network Capacitive Feedback Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 T-Network Capacitive Feedback Circuit . . . . . . . . . . . . . . 13 2.3 A Power-Efficient Reconfigurable OTA-C Filter Design . . . . . . . . . 17 2.3.1 Hextuple-Diffusor-Quadruple-Differential-Pair (HDQDP) . . . . 18 2.3.2 Power-Efficient Linearized OTA . . . . . . . . . . . . . . . . . . 19 2.3.3 Noise Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.4 Input Capacitive Attenuation . . . . . . . . . . . . . . . . . . . . 21 2.4 A Power-Efficient Reconfigurable Sensing Channel Design . . . . . . . . 23 2.5 A Power-Efficient Reconfigurable Buffer Amplifier Design . . . . . . . . 24 2.6 A Power-Efficient Reconfigurable Output-Capacitor-Less Low-Drop-Out Regulator Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6.1 Floating-Gate nMOS Pass Transistor . . . . . . . . . . . . . . . 27 2.6.2 Adaptively Biased Class-AB Error Amplifier . . . . . . . . . . . 27 3 Proposed Buffer Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 Buffer Amplifier for Biomedical Applications . . . . . . . . . . . . . . . 29 3.2 Low Power Fully-Capacitive Buffer Amplifier with Current Correlated Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.1 The Evolution of FCBA . . . . . . . . . . . . . . . . . . . . . . 32 3.2.2 Class-AB Input Stage . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.3 Folded Cascode And Class-AB Output Stage . . . . . . . . . . . 39 3.2.4 Voltage Bias Generator . . . . . . . . . . . . . . . . . . . . . . . 41 3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.1 The Effect of Capacitance Mismatch . . . . . . . . . . . . . . . . 46 3.3.2 The Effect of Input Offset . . . . . . . . . . . . . . . . . . . . . 47 4 Proposed Programming System . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.1 Background Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.1.1 Hot-Electron Injection . . . . . . . . . . . . . . . . . . . . . . . 48 4.1.2 Fowler-Nordheim Tunneling . . . . . . . . . . . . . . . . . . . . 50 4.2 Programming Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 51 5 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.1 Power-Efficient Dual-Channel Analog Front-End . . . . . . . . . . . . . 53 5.1.1 Performance of the Sub-Blocks . . . . . . . . . . . . . . . . . . 54 5.1.2 Performance of the Sensing Channel with Different Configurations 61 5.2 Power-Efficient Variable Gain Buffer Amplifier . . . . . . . . . . . . . . 70 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.1 Power-Efficient Dual-Channel Analog Front-End . . . . . . . . . . . . . 80 6.2 Power-Efficient Variable Gain Buffer Amplifier . . . . . . . . . . . . . . 81 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Letter of Authority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

    [1] B. A. Minch, “An inverted CMOS class-ab transconductor featuring rail-to-rail
    common-mode input range and constant transconductance gain,” IEEE Biomedical
    Circuits and Systems Conference, 2014.
    [2] K.-J. de Langen and J. H. Huijsing, “Compact low-voltage power-efficient operational
    amplifier cells for vlsi,” IEEE Journal of Solid–State Circuits, vol. 33, no. 10,
    pp. 1482–1496, 1998.
    [3] B. A. Minch, “A low-voltage mos cascode bias circuit for all current levels,” IEEE
    Proceedings of the International Symposium on Circuits and Systems, 2002.
    [4] J. G. Webster, Medical Instrumentation: Application and Design. Wiley, 4th ed.,
    2010.
    [5] N. V. Thakor, Biopotentials and Electrophysiology Measurement. CRC Press LLC,
    1999.
    [6] H. C. Hemmings and P. M. Hopkins, Foundations of Anesthesia: Basic Sciences for
    Clinical Practice. Mosby, 2rd ed., 2005.
    [7] J. J. Bailey, A. S. Berson, A. Garson, L. G. Horan, P. W. Macfarlane, D. W. Mortara,
    and C. Zywietz, “Recommendations for standardization and specifications in automated
    electrocardiography: Bandwidth and digital signal processing,” Circulation,
    vol. 81, no. 2, pp. 730–739, 1990.
    [8] J. S. Kumar and P. Bhuvaneswari, “Analysis of electroencephalography (EEG) signals
    and its categorization–a study,” Procedia Engineering, vol. 38, pp. 2525–2536,
    2012.
    [9] R. Merletti and P. di Torino, “Standards for reporting EMG data,” Journal of Electromyography
    and Kinesiology, vol. 9, no. 1, pp. III–IV, 1999.
    [10] Y.-P. Chen, D. Jeon, Y. Lee, Y. Kim, Z. Foo, I. Lee, N. B. Langhals, G. Kruger,
    H. Oral, O. Berenfeld, Z. Zhang, D. Blaauw, and D. Sylvester, “An injectable 64
    nW ECG mixed-signal SoC in 65 nm for arrhythmia monitoring,” IEEE Journal of
    Solid–State Circuits, vol. 50, no. 1, pp. 375 – 390, 2015.
    [11] A. C. N. Society, “Guideline twelve: Guidelines for long-term monitoring for
    epilepsy,” Journal of Clinical Neurophysiology, pp. 1–17, 2008.
    [12] C. J. D. Luca, “The use of surface electromyography in biomechanics,” Journal of
    Applied Biomechanics, vol. 13, no. 2, pp. 135–163, 1997.
    [13] W. A. Smith, B. J. Mogen, E. E. Fetz, V. S. Sathe, and B. P. Otis, “Exploiting electrocorticographic
    spectral characteristics for optimized signal chain design: A 1.08 μW
    analog front end with reduced ADC resolution requirements,” IEEE Transactions on
    Biomedical Circuits and Systems, vol. 10, no. 6, pp. 1171–1180, 2016.
    [14] A. K.-Bidhendi, O. M.-Arasteh, M.-C. Lee, C. M. McCrimmon, P. T. Wang, A. Mahajan,
    C. Liu, Z. Nenadic, A. H. Do, and P. Heydari, “CMOS ultralow power brain
    signal acquisition front-ends: Design and human testing,” IEEE Transactions on
    Biomedical Circuits and Systems, vol. 11, no. 5, pp. 1111–1122, 2017.
    [15] R. F. Yazicioglu, P. Merken, R. Puers, and C. V. Hoof, “A 200μW eight-channel
    EEG acquisition ASIC for ambulatory EEG systems,” IEEE Journal of Solid–State
    Circuits, vol. 43, no. 12, pp. 3025–3038, 2008.
    [16] Y. Tseng, Y. Ho, S. Kao, and C. Su, “A 0.09 W low power front-end biopotential
    amplifier for biosignal recording,” IEEE Transactions on Biomedical Circuits and
    Systems, vol. 6, no. 5, pp. 508–516, 2012.
    [17] S.-L. Teng, R. Rieger, and Y.-B. Lin, “Programmable ExG biopotential front-end IC
    for wearable applications,” IEEE Transactions on Biomedical Circuits and Systems,
    vol. 8, no. 4, pp. 543–551, 2014.
    [18] S.-Y. Peng, P. E. Hasler, and D. V. Anderson, “An Analog Programmable Multidimensional
    Radial Basis Function Based Classifier,” IEEE Transactions on Circuits
    and Systems I: Fundamental Theory and Applications, vol. 54, pp. 2148–2158, 2007.
    [19] T.-Y. Wang, M.-R. Lai, C. Twigg, and S.-Y. Peng, “A fully reconfigurable low-noise
    biopotential sensing amplifier with 1.96 noise efficiency factor,” IEEE Transactions
    on Biomedical Circuits and Systems, vol. 8, no. 3, pp. 411–422, 2014.
    [20] Y. Tsividis, M. Banu, and J. Khoury, “Continuous-time MOSFET-C filters in VLSI,”
    IEEE Journal of Solid–State Circuits, vol. 33, no. 2, pp. 125–140, 1986.
    [21] M. Tavakoli and R. Sarpeshkar, “A sinh resistor and its application to tanh linearization,”
    IEEE Journal of Solid–State Circuits, vol. 40, no. 2, pp. 536–543, 2005.
    [22] E. Ozalevli and P. E. Hasler, “Tunable highly linear floating-gate cmos resistor using
    common-mode linearization technique,” IEEE Transactions on Circuits and Systems
    I: Fundamental Theory and Applications, vol. 55, no. 4, pp. 999–1010, 2008.
    [23] T.-Y. Wang, L.-H. Liu, and S.-Y. Peng, “A power-efficient highly linear reconfigurable
    biopotential sensing amplifier using gate-balanced pseudoresistors,” IEEE
    Transactions on Circuits and Systems II: Analog and Digital Signal Processing,
    vol. 62, no. 2, pp. 199–203, 2015.
    [24] S.-Y. Peng, M. S. Quershi, P. E. Hasler, A. Basu, and F. L. Degertekin, “A chargebased
    low-power high-snr capacitive sensing interface circuit,” IEEE Transactions
    on Circuits and Systems I: Fundamental Theory and Applications, vol. 55, pp. 1863–
    1872, 2008.
    [25] M. S. J. Steyaert and W. M. C. Sansen, “A micropower low-noise monolithic instrumentation
    amplifier for medical purposes,” IEEE Journal of Solid–State Circuits,
    vol. 22, no. 6, pp. 1163–1168, 1987.
    [26] R. Alini, A. Baschirotto, and R. Castello, “Tunable BiCMOS continuous-time filter
    for high-frequency applications,” IEEE Journal of Solid–State Circuits, vol. 27,
    no. 12, pp. 1905–1915, 1992.
    [27] S.-Y. Peng, Y.-H. Lee, T.-Y. Wang, H.-C. Huang, M.-R. Lai, C.-H. Lee, and L.-
    H. Liu, “A power-efficient reconfigurable ota-c filter for low-frequency biomedical
    applications,” IEEE Transactions on Circuits and Systems I: Fundamental Theory
    and Applications, vol. PP, no. 99, pp. 1–13, 2017.
    [28] J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive learning particle
    swarm optimizer for global optimization of multimodal functions,” IEEE Transactions
    on Circuits and Systems, vol. 10, no. 3, pp. 281–295, 2006.
    [29] S.-Y. Peng, L.-H. Liu, P.-K. Chang, T.-Y. Wang, and Y.-H. Lee, “A power-efficient
    reconfigurable output-capacitor-less low-drop-out regulator for low-power analog
    sensing front-end,” IEEE Transactions on Circuits and Systems I: Fundamental Theory
    and Applications, vol. 64, no. 6, pp. 1318–1327, 2017.
    [30] B. A. Minch, “A simple class-AB transconductor in CMOS,” IEEE Proceedings of
    the International Symposium on Circuits and Systems, 2008.
    [31] S. L. Wong and C. A. T. Salama, “An efficient CMOS buffer for driving large capacitive
    loads,” IEEE Journal of Solid–State Circuits, vol. SC-21, no. 3, pp. 464–469,
    1986.
    [32] M. J. Kramer, E. Janssen, K. Doris, and B. Murmann, “A 14 b 35 ms/s SAR ADC
    achieving 75 db SNDR and 99 db SFDR with loop-embedded input buffer in 40 nm
    CMOS,” IEEE Journal of Solid–State Circuits, vol. 50, no. 12, pp. 2891–2900, 2015.
    [33] P. R. Surkanti and P. M. Furth, “Converting a three-stage pseudoclass-ab amplifier
    to a true-class-ab amplifier,” IEEE Transactions on Circuits and Systems II: Analog
    and Digital Signal Processing, vol. 59, no. 4, pp. 229–233, 2012.
    [34] T.-Y. Wang, M.-R. Lai, C. M. Twigg, and S.-Y. Peng, “A fully reconfigurable lownoise
    biopotential sensing amplifier with 1.96 noise efficiency factor,” IEEE Transactions
    on Biomedical Circuits and Systems, vol. 8, no. 3, pp. 411–422, 2014.
    [35] C.-W. Lu, “A rail-to-rail class-ab amplifier with an offset cancellation for lcd
    drivers,” IEEE Journal of Solid–State Circuits, vol. 44, no. 2, pp. 525–537, 2009.
    [36] R. van Dongen and V. Rikkink, “A 1.5 V class AB CMOS buffer amplifier for driving
    low-resistance loads,” IEEE Journal of Solid–State Circuits, vol. 30, no. 12,
    pp. 1333–1338, 1995.
    [37] T. Saether, C.-C. Hung, Z. Qi, M. Ismail, and O. Aaserud, “High speed, high linearity
    CMOS buffer amplifier,” IEEE Journal of Solid–State Circuits, vol. 31, no. 2,
    pp. 255–258, 1996.
    [38] R. Wu, J. H. Huijsing, and K. A. A. Makinwa, “A current-feedback instrumentation
    amplifier with a gain error reduction loop and 0.06untrimmed gain error,” IEEE
    Journal of Solid–State Circuits, vol. 46, no. 12, pp. 2794–2806, 2011.
    [39] A. D. Grasso, D. Marano, F. E.-Alfaro, A. J. L.-Martin, G. Palumbo, and S. Pennisi,
    “Self-biased dual-path push-pull output buffer amplifier for lcd column drivers,”
    IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,
    vol. 61, no. 3, pp. 663–670, 2014.
    [40] P. Bruschi, D. Navarrini, and M. Piotto, “A high current drive CMOS output stage
    with a tunable quiescent current limiting circuit,” IEEE Journal of Solid–State Circuits,
    vol. 38, no. 8, pp. 1416–1420, 2003.
    [41] J. A. Fisher and R. Koch, “A highly linear CMOS buffer amplifier,” IEEE Journal
    of Solid–State Circuits, vol. SC-22, no. 3, pp. 330–334, 1987.
    [42] I. Gradinariu and C. Gontrand, “A fast-settling 3 V CMOS buffer amplifier,” IEEE
    Transactions on Circuits and Systems I: Fundamental Theory and Applications,
    vol. 43, no. 6, pp. 433–437, 1996.
    [43] A. J. L.-Martin, S. Baswa, J. R.-Angulo, and R. G.-Carvajal, “Low-voltage super
    class ab CMOS OTA cells with very high slew rate and power efficiency,” IEEE
    Journal of Solid–State Circuits, vol. 40, no. 5, pp. 1068–1077, 2005.
    [44] M. R. V. Bernal, S. Celma, N. Medrano, and B. Calvo, “An ultralow-power lowvoltage
    class-ab fully differential opamp for long-life autonomous portable equipment,”
    IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
    Processing, vol. 59, no. 10, pp. 643–647, 2012.
    [45] L. Zuo and S. K. Islam, “Low-voltage bulk-driven operational amplifier with improved
    transconductance,” IEEE Transactions on Circuits and Systems I: Fundamental
    Theory and Applications, vol. 60, no. 8, pp. 2084–2091, 2013.
    [46] C. G.-Alberdi, J. A.-Ruiz, A. J. L.-Martin, and J. R.-Angulo, “Micropower class-ab
    vga with gain-independent bandwidth,” IEEE Transactions on Circuits and Systems
    II: Analog and Digital Signal Processing, vol. 60, no. 7, pp. 397–401, 2013.
    [47] M. Maruyama, S. Taguchi, M. Yamanoue, and K. Iizuka, “An analog front-end for a
    multifunction sensor employing a weak-inversion biasing technique with 26 nVrms,
    25 aCrms, and 19 fArms input-referred noise,” IEEE Journal of Solid–State Circuits,
    vol. 51, no. 10, pp. 2252–2261, 2016.
    [48] N. V. Helleputte, M. Konijnenburg, J. Pettine, D.-W. Jee, H. Kim, A. Morgado, R. V.
    Wegberg, T. Torfs, R. Mohan, A. Breeschoten, H. d. Groot, C. V. Hoof, and R. F.
    Yazicioglu, “A 345 μW multi-sensor biomedical SoC with bio-impedance, 3-channel
    ECG, motion artifact reduction, and integrated DSP,” IEEE Journal of Solid–State
    Circuits, vol. 50, no. 1, pp. 230 – 244, 2015.
    [49] H. Kassiri, A. Bagheri, N. Soltani, K. Abdelhalim, H. M. Jafari, M. T. Salam, J. L. P.
    Velazquez, and R. Genov, “Battery-less tri-band-radio neuro-monitor and responsive
    neurostimulator for diagnostics and treatment of neurological disorders,” IEEE
    Journal of Solid–State Circuits, vol. 51, no. 5, pp. 1274 – 1289, 2016.
    [50] H. Chandrakumar and D. Marković, “A high dynamic-range neural recording chopper
    amplifier for simultaneous neural recording and stimulation,” IEEE Journal of
    Solid–State Circuits, vol. 52, no. 3, pp. 645 – 656, 2017.
    [51] W. Jiang, V. Hokhikyan, H. Chandrakumar, V. Karkare, , and D. Marković, “A ±50-
    mV linear-input-range VCO-based neural-recording front-end with digital nonlinearity
    correction,” IEEE Journal of Solid–State Circuits, vol. 52, no. 1, pp. 173 –
    184, 2017.
    [52] F. E.-Alfaro, S. Pennisi, G. Palumbo, and A. J. L.-Martin, “Low-power class-ab
    CMOS voltage feedback current operational amplifier with tunable gain and bandwidth,”
    IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
    Processing, vol. 61, no. 8, pp. 574–578, 2014.
    [53] E. C.-Bernal, S. Pennisi, A. D. Grasso, A. Torralba, and R. G. Carvajal, “0.7-V threestage
    class-AB CMOS operational transconductance amplifier,” IEEE Transactions
    on Circuits and Systems I: Fundamental Theory and Applications, vol. 63, no. 11,
    pp. 1807–1815, 2016.
    [54] A. L.-Martin, M. P. Garde, J. M. Algueta, C. A. C. Blas, R. G. Carvajal, and J. R.-
    Angulo, “Enhanced single-stage folded cascode OTA suitable for large capacitive loads,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
    Processing, pp. 1–5, 2017.

    無法下載圖示 全文公開日期 2023/01/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE