簡易檢索 / 詳目顯示

研究生: 徐子恒
Tzu-Heng Hsu
論文名稱: 自適應電流調變輸入驅動器與資料轉換器電路整合暨位準交越逐漸逼近式混合架構類比數位轉換器設計與驗證
The Autonomous Current Adaption Input Driver and Data Converter Circuit Integration and A Level-Crossing Hybrid SAR ADC Circuit Design and Verification
指導教授: 彭盛裕
Sheng-Yu Peng
口試委員: 廖育德
Yu-Te Liao
黃柏蒼
Po-Tsang Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 110
中文關鍵詞: 輸入驅動器自適應電流調變類比數位轉換器位準交越非均勻取樣
外文關鍵詞: Input Driver, Autonomous Current Adaption, Analog to Digital Converter, Level Crossing, Non-uniform Sampling
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為兩個主題,第一個研究主題將類比數位轉換器與輸入驅動器兩大電路整合,並應用於類比前端感測電路中,採用逐漸逼近式之類比數位轉換器架構與自適電流調變輸入驅動器,進而達到降低電路功耗之目標;第二個研究主題則提出位準交越式及逐漸逼近式混合架構之不規律採樣類比數位轉換器,並應用於生理訊號感測,透過逐漸逼近式架構於類比數位轉換之低功耗優點,結合位準交越式架構於穩態時之超低功耗,進而達到降低電路功耗之目標,此外,由於採用不規律取樣與位準交越式架構,更可以較低位元數達成較高之線性度。
      第一部分電路實現於台積電0.35μm 2P4M 互補式金屬氧化物半導體技術,為達成低功耗之目標,電路中輸入驅動器採幫浦電路AB 類放大器架構,藉以達成電流自適應調變,訊號於追蹤階段產生較大供應電流,使驅動器擁有足夠迴轉率,反之,隨著輸入驅動器進入穩定階段,電路亦將自主降低供應電流至靜態電流。此外,本電路除了於迴受架構上採全電容式,透過切換不同電容陣列亦可改變增益;並在偏壓電流、共模迴受、輸入電壓以及疊接電壓等處加入懸浮閘電晶體,透過編程技術替整體電路增加更高之電路可重構性。後端整合之類比數位轉換器採逐漸逼近式架構,取樣頻率為200 kHz ,受惠於逐漸逼近式類比數位轉換器之低功耗電路特性,且此架構之適用解析度與類比前端感測電路應用之生理訊號十分契合,考量到晶片封裝與印刷電路板寄生所致之電壓震盪,電路中亦加入參考電壓緩衝電路以降低其影響。輸入訊號頻率為奈奎斯95.31 kHz 且輸入振幅為2.8 V pp 時,驅動器總諧波失真為−70.1 dB ,於奈奎斯頻率下且追蹤相位10% 時,與傳統電路架構相比,可節省49.5% 的功耗。所量測之無雜散動態範圍與信號雜訊失真比率分別為60.53 dB 和56.51 dB ,有效位元數為9.1 位元。
      另一部分研究則為不規律採樣之位準交越式類比數位轉換器的電路創新,應用領域為生理訊號,實現於台積電0.18μm 1P6M 互補式金屬氧化物半導體技術,電路中將量化器由逐漸逼近式類比數位轉換器取代傳統的單一比較器基底或是快閃式類比數位轉換器;此外,於位準交越之偵測上,透過具幫浦電路之靜態比較器與動態鄰近比較器相互進行位準偵測。當輸入訊號頻率為10 kHz ,採樣解析度為4000 時,所量測之無雜散動態範圍為56.195 dB ,有效位元數為9.04 位元。總消耗功率為9.16μW,等效電源轉換率為870fJ/Conversion − step。


    This thesis is separated into two sections. In the first part of the research, an analog-to-digital converter(ADC) and input driver are integrated into one chip for the analog-front-end(AFE) sensing circuit. Successive-approximation-register(SAR) topology is adopted in the data converter. As for the input driver, autonomous current adaption is implemented. With these two topologies, lower power consumption can be achieved. The second section of the thesis proposed a non-uniform sampling level-crossing(LC) hybrid SAR ADC, which is suitable for biomedical signal sensing—combined the low power consumption advantage of the SAR ADC structure and the LC ADC’s ultra-low power consumption during the steady state. Therefore, the total power consumption can be low. Moreover, due to the non-uniform sampling and the LC topology, higher linearity can be achieved by the lower resolution ADC.
      In the first section, the prototype version of the proposed circuit has been designed and fabricated in a 0.35μmtwo-poly-four-metal(2P4M) complementary metal oxide semiconductor(CMOS) process. In order to fulfill the low power consumption goal, the input driver adopts the class AB topology to achieve autonomous current adaption. During the tracking phase, the input driver will generate a higher bias current to provide enough slew rate. On the other hand, the bias current will gradually recover to a quiescent current in the steady state. Besides, the proposed circuit adopts the fully capacitive feedback structure, and the variable gain can be utilized by switching different capacitor arrays. Furthermore, the reconfigurability is provided by program the floating gate transistors, which are employed at bias current, common-mode feedback, input common-mode voltage, and cascode biasing. The integrated ADC adopts SAR topology, while the sampling rate is 200 kHz. Benefiting from the low power circuit characteristics of the SAR ADC and the compatible resolution and physiological signal applications of the AFE sensing circuit in this architecture. Considering the voltage undershoot caused by the parasitic inductance of the chip packaging and the PCB board, a reference voltage buffer circuit has been designed in the chip to reduce its errors. As a result, when the input frequency in Nyquist frequency of 95.31 kHz, and the input amplitude of 2.8 V pp. The total harmonic distortion(THD) reaches −70.1 dB. Compared to the conventional structure, the proposed input driver can reduce 49.5% of power consumption in Nyquist frequency under the tracking period of 10%. The measured spurious-free dynamic range (SFDR) and the signal noise distortion ratio(SNDR) are 60.53 dB and 56.51 dB. Therefore, the effective number of
    bits(ENoB) is 9.1bit.
      The other part of the thesis introduces the non-uniform sampling LC ADC innovation for biomedical signal sensing. The prototype version of the proposed circuit has been designed and fabricated in a 0.18μmone-poly-six-metal(1P6M) CMOS process. The conventional quantizer, single comparator-based or flash-based ADC, is replaced by SAR ADC. The static comparator with bump cell and the dynamic proximity comparator are adapted to detect the level-crossing. When the input frequency is 10 kHz and the time resolution is 4000, the measured SFDR is 56.195 dB, so that the ENoB is 9.04bit. The total power consumption is 9.16μW. As a result, the equivalent power conversion rate is 870fJ/Conversion − step.

    Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi 1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Input Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Successive Approximation Register Analog-to-Digital Converter . . . . . 4 1.3 Level-Crossing Hybrid SAR ADC . . . . . . . . . . . . . . . . . . . . . 5 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Background Knowledge of the ACAID SAR ADC Integrated Circuit . . . . . . 9 2.1 Literature Review of the Input Driver . . . . . . . . . . . . . . . . . . . 9 2.1.1 ΔVmax Diminution . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 TS Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.3 CL Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Literature Review of the SAR ADC . . . . . . . . . . . . . . . . . . . . 14 2.2.1 Fundamental SAR ADC . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 Fully Differential SAR ADC . . . . . . . . . . . . . . . . . . . . 15 2.2.3 Monotonic Switching SAR ADC . . . . . . . . . . . . . . . . . 16 2.2.4 Split Capacitor Array SAR ADC . . . . . . . . . . . . . . . . . . 19 2.2.5 ADC Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . 20 3 Implementation of the ACAID SAR ADC Integrated Circuit . . . . . . . . . . 23 3.1 Autonomous Current Adaptation Input Driver . . . . . . . . . . . . . . . 23 3.1.1 Design Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.2 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . 24 3.1.3 Operation Principle . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.4 Variable Gain Implementation . . . . . . . . . . . . . . . . . . . 29 3.2 Floating-Gate Programming Technology . . . . . . . . . . . . . . . . . . 32 3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.2 Fowler-Nordheim Tunneling . . . . . . . . . . . . . . . . . . . . 33 3.2.3 Hot-Carrier Injection . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.4 Charge Programming Procedure . . . . . . . . . . . . . . . . . . 35 3.3 Successive Approximation Register Analog to Digital Converter . . . . . 37 3.3.1 Track-and-Hold Switch Design . . . . . . . . . . . . . . . . . . 38 3.3.2 Dynamic Comparator Design . . . . . . . . . . . . . . . . . . . 42 3.3.3 Successive Approximation Register Logic Design . . . . . . . . . 46 3.3.4 Capacitor Array and Digital to Analog Converter Design . . . . . 47 3.3.5 Reference Buffer Design . . . . . . . . . . . . . . . . . . . . . . 51 3.3.6 10bit SAR ADC Simulation Result . . . . . . . . . . . . . . . . 55 3.4 Layout and Measurement Results of the Proposed ACAID SAR ADC Integrated Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.4.1 Layout of the Proposed ACAID SAR ADC Integrated Circuit . . 56 3.4.2 Measurement Results of the ACAID Circuit . . . . . . . . . . . . 57 3.4.3 Measurement Results of the SAR ADC Circuit . . . . . . . . . . 61 3.5 Discussion and Comparison . . . . . . . . . . . . . . . . . . . . . . . . 63 4 Background Knowledge of the Level-Crossing ADC . . . . . . . . . . . . . . . 68 4.1 Literature Review of the Level-Crossing ADC . . . . . . . . . . . . . . . 69 4.1.1 Floating Window LC ADC . . . . . . . . . . . . . . . . . . . . . 69 4.1.2 Fixed Window LC ADC . . . . . . . . . . . . . . . . . . . . . . 70 4.1.3 Adaptive Resolution LC ADC . . . . . . . . . . . . . . . . . . . 71 4.1.4 Flash-Based LC ADC . . . . . . . . . . . . . . . . . . . . . . . 73 4.1.5 Signal Reconstruction in Non-uniform Sampling . . . . . . . . . 74 5 Implementation of the LC Hybrid SAR ADC circuit . . . . . . . . . . . . . . . 76 5.1 Level-Crossing Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.1.1 Static Comparator Design . . . . . . . . . . . . . . . . . . . . . 78 5.2 Successive Approximation Register Analog to Digital Converter . . . . . 81 5.2.1 Dynamic Proximity Comparator Design . . . . . . . . . . . . . . 81 5.2.2 Bi-Directional Successive Approximation Register Logic Design 84 5.2.3 Capacitor Array and LSB-First Digital to Analog Converter Design 86 5.2.4 LC Hybrid SAR ADC Simulation Result . . . . . . . . . . . . . 89 5.3 Layout and the Measurement Result of the Proposed LC Hybrid SAR ADC Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.3.1 Layout of the Proposed LC Hybrid SAR ADC Circuit . . . . . . 90 5.3.2 Measurement Result of the Proposed LC Hybrid SAR ADC Circuit 91 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

    [1] H. S. Bindra, J. Lechevallier, A. J. Annema, S. M. Louwsma, E. V. Tuijl, and
    B. Nauta, “Range pre-selection sampling technique to reduce input drive energy for sar adcs,” IEEE Proceedings of the Asian Solid-State Circuits Conference (A-SSCC), pp. 217–220, 2017.
    [2] L.Wei, X. H. Pan, C. H. Chan, Y. Zhu, and R. P. Martins, “Input correlated swapsampling technique for input driver power reduction in a 12b 25ms/s sar adc,” IEEE Proceedings of the International Symposium on Circuits and Systems, pp. 1–5, 2019.
    [3] H. S. Bindra, A. J. Annema, S. M. Louwsma, E. V. Tuijl, and B. Nauta, “An energy reduced sampling technique applied to a 10bits 1ms/s sar adcs,” IEEE European Solid-State Circuits Conference, pp. 238–238, 2017.
    [4] X. Zou, L. Liu, J. H. Cheong, L.Yao, P. Li, M. Y. Cheng, W. L. Goh, R. Rajkumar,
    G. S. Dawe, K. W. Cheng, and M. Je, “A 100-channel 1-mw implantable neural
    recording ic,” IEEE Transactions on Circuits and Systems I: Fundamental Theory
    and Applications, vol. 60, no. 10, pp. 2584–2596, 2013.
    [5] M. J. Kramer, E. Janssen, K. Doris, and B. Murmann, “A 14 b 35ms/s sar adc achieving 75 db sndr and 99 db sfdr with loop-embedded input buffer in 40 nm cmos,” IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2891–2900, 2015.
    [6] T. Kim and Y. Chae, “A 2mhz bw buffer-embedded noise-shaping sar adc achieving 73.8db sndr and 87.3db sfdr,” IEEE Proceedings of the Custom Integrated Circuits Conference, pp. 1–4, 2019.
    [7] J. Liu, X. Tang, W. Zhao, L. Shen, and N. Sun, “A 13-bit 0.005-mm240-ms/s sar adc with kt/c noise cancellation,” IEEE Journal of Solid-State Circuits, vol. 55, no. 12, pp. 3260–3270, 2020.
    [8] S. Li, “A kt/c-noise-cancelled noise-shaping sar adc with a duty-cycled amplifier,”IEEE Proceedings of the International Midwest Symposium on Circuits and Systems, pp. 758–761, 2020.
    [9] T.-H. Wang, R. Wu, V. Gupta, X. Tang, and S. Li, “A 13.8-enob fully dynamic thirdorder noise-shaping sar adc in a single-amplifier ef-ciff structure with hardwarereusing kt/c noise cancellation,” IEEE Journal of Solid-State Circuits, vol. 56, no. 12, pp. 3268–3680, 2021.
    [10] M. Zhan, L. Jie, X. Tang, and N. Sun, “A 0.004mm2 200ms/s pipelined sar adc with kt/c noise cancellation and robust ring-amp,” IEEE Proceedings of the International Solid-State Circuits Conference (ISSCC), vol. 65, pp. 164–166, 2022.
    [11] 蕭宗益, ” 類比記憶體編成之積體電路設計與系統整合”. 國立臺灣科技大學
    碩士論文, 2015.
    [12] 黃筠傑, ” 利用嵌入式類比快閃記憶體技術設計之暫態增強自適功率調變緩衝
    放大器積體電路設計”. 國立臺灣科技大學碩士論文, 2023.
    [13] 方冠鈞, ” Data Converters for Biomedical Applications and Radar Systems ”. 國立臺灣科技大學碩士論文, 2020.
    [14] 許庭瀚, ” Integrated Circuit Design and Verification of Successive Approximation Register Analog-to-Digital Converters for High Speed, High Resolution, and Low Power Applications ”. 國立臺灣科技大學碩士論文, 2022.
    [15] B. Schell and Y. Tsividis, “A continuous-time adc/dsp/dac system with no clock and with activity-dependent power dissipation,” IEEE Journal of Solid-State Circuits, vol. 43, no. 11, pp. 2472–2481, 2008.
    [16] D. Z. Y. Li and W. A. Serdijn, “A sub-microwatt asynchronous level-crossing adc for biomedical applications,” IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 2, pp. 149–157, 2013.
    [17] Y. H. et al, “A 61-nw level-crossing adc with adaptive sampling for biomedical applications,”IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 1, pp. 56–60, 2019.
    [18] C. Weltin-Wu and Y. Tsividis, “An event-driven clockless level-crossing adc with signal-dependent adaptive resolution,” IEEE Journal of Solid-State Circuits, vol. 48, no. 9, pp. 2180–2190, 2013.
    [19] T. F. Wu, C. R. Ho, and M. S. W. Chen, “A flash-based non-uniform sampling adc with hybrid quantization enabling digital anti-aliasing filter,” IEEE Journal of Solid-State Circuits, vol. 52, no. 9, pp. 2335–2349, 2017.
    [20] Y. M. Chae, W. Liu, Z. Yang, T. Chen, J. Kim, M. Sivaprakasam, and M. Yuce, “A 128-channel 6 mw wireless neural recording ic with on-the- fly spike sorting and uwb transmitter,” IEEE Proceedings of the International Solid-State Circuits Conference(ISSCC) Dig. Tech. Papers, pp. 146–147, 2008.
    [21] K. M. A.-Ashmouny, S. I. Chang, and E. Yoon, “A 4μw/ch analog front-end module with moderate inversion and power-scalable sampling operation for 3-d neural microsystems,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 5, pp. 403–413, 2012.
    [22] C. M. Lopez, D. Prodanov, D. Braeken, I. Gligorijevic, E. Eberle, C. Bartic, R. Puers, and G. Gielen, “A multichannel integrated circuit for electrical recording of neural activity, with independent channel programmability,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 2, pp. 101–110, 2012.
    [23] C.-Y. Wu, C.-H. Cheng, and Z.-X. Chen, “16-channel cmos chopper-stabilized analog front-end ecog acquisition circuit for a closed-loop epileptic seizure control system,” IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 3, pp. 543–553, 2018.
    [24] Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S. U, R. P. Martins, and F. Maloberti, “A 10-bit 100-ms/s reference-free sar adc,” IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111–1121, 2010.
    [25] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu, and C.-C. Tsai, “A 10b 100-ms/s 1.13mw sar adc with binary-scaled error compensation,”IEEE Proceedings of the International Solid-State Circuits Conference(ISSCC), pp. 386–387, 2010.
    [26] G.-Y. Huang, S.-J. Chang, C.-C. Liu, and Y.-Z. Lin, “A 1μw 10-bit 200-ks/s sar adc with a bypass window for biomedical applications,” IEEE Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2783–2795, 2012.
    [27] M. Liu, A. H. M. Roermund, and P. Harpe, “A 7.1-fj/conversion-step 88-db sfdr sar adc with energy-free“swap to reset",” IEEE Journal of Solid-State Circuits, vol. 52, no. 11, pp. 2979–2990, 2017.
    [28] H. S. Bindra, J. Lechevallier, A. J. Annema, S. M. Louwsma, E. V. Tuijl, and
    B. Nauta, “Range pre-selection sampling technique to reduce input drive energy for sar adcs",” IEEE Proceedings of the Asian Solid-State Circuits Conference (ASSCC), pp. 217–220, 2017.
    [29] L.Wei, X. H. Pan, C. H. Chan, Y. Zhu, and R. P. Martins, “Input correlated swapsampling technique for input driver power reduction in a 12b 25ms/s sar adc,” IEEE Proceedings of the International Symposium on Circuits and Systems, pp. 1–5, 2019.
    [30] B. Murmann , ” Limits on ADC Power Dissipation in Analog Circuit Design ”. The Netherlands: Springer , 2006.
    [31] T.-Y. Wang, M.-R. Lai, C. M. Twigg, and S.-Y. Peng, “A fully reconfigurable low noise biopotential sensing amplifier with 1.96 noise efficiency factor,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 3, pp. 411–422, 2014.
    [32] T.-Y. Wang, L.-H. Liu, and S.-Y. Peng, “Power-efficient highly linear reconfigurable biopotential sensing amplifier using gate-balanced pseudoresistors,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 2, pp. 199–203, 2015.
    [33] S.-Y. Peng, Y.-H. Lee, T.-Y. Wang, H.-C. Huang, M.-R. Lai, C.-H. Lee, and L.-
    H. Liu, “A power-efficient reconfigurable ota-c filter for low-frequency biomedical applications,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 65, no. 2, pp. 543–555, 2018.
    [34] S.-Y. Peng, L.-H. Liu, P.-K. Chang, T.-Y. Wang, and H.-Y. Li, “A power-efficient reconfigurable output-capacitor-less low-drop-out regulator for low-power analog sensing front-end,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 64, no. 6, pp. 1318–1327, 2017.
    [35] Z.-J. Lo, Y.-C. Wang, Y.-J. Huang, R.-Y. Hung, Y.-H. Wu, T.-Y. Wang, Y.-J. Huang, H.-C. Huang, Y.-C. Lu, S.-Y. Peng, C.-Y. Chang, W.-S. Lai, and Y.-J. Hsu, “A reconfigurable differential-to-single-ended autonomous current adaptation buffer amplifier suitable for biomedical applications,” IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no. 6, pp. 1405–1418, 2021.
    [36] Z.-J. Lo, B. Nath, Y.-C.Wang, Y.-J. Haung, H.-C. Haung, and S.-Y. Peng, “A floating gate-based four-channel reconfigurable analog front-end integrated circuit,” IEEE Proceedings of the International Symposium on Circuits and Systems, pp. 1–4, 2021.
    [37] T.-Y. Wang, H.-Y. Li, Z.-Y. Ma, Y.-J. Huang, and S.-Y. Peng, “A bypass-switching sar adc with a dynamic proximity comparator for biomedical applications,” IEEE Journal of Solid-State Circuits, vol. 53, no. 6, pp. 1743–1754, 2018.
    [38] J. Guerber, H. Venkatram, M. Gande, A. Waters, and U.-K. Moon, “A 10-b ternary sar adc with quantization time information utilization,” IEEE Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2604–2613, 2012.
    [39] F. M. Yaul and A. P. Chandrakasan, “A 10 bit sar adc with data-dependent energy reduction using lsb-first successive approximation,” IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 2825–2834, 2014.
    [40] D. Zhang, A. Bhide, and A. Alvandpour, “A 53-nw 9.1-enob 1-ks/s sar adc in 0.13μm cmos for medical implant devices,” IEEE Journal of Solid-State Circuits, vol. 47, no. 7, pp. 1585–1593, 2011.
    [41] D. Gangopadhyay, E. G. Allstot, A. M. R. Dixon, K. Natarajan, S. Gupta, and
    D. J.Allstot, “Compressed sensing analog front-end for bio-sensor applications,”IEEE Journal of Solid-State Circuits, vol. 49, no. 2, pp. 426–438, 2014.
    [42] M. V. Elzakker, E. v. Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink, and
    B. Nauta, “A 10-bit charge-redistribution adc consuming 1.9μw at 1 ms/s,” IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1007–1015, 2010.
    [43] B. P. Ginsburg and A. P. Chandrakasan, “500-ms/s 5-bit adc in 65-nm cmos with split capacitor array dac,” IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 739–747, 2007.
    [44] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 10-bit 50-ms/s sar adc with a monotonic capacitor switching procedure,” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731–740, 2010.
    [45] H.-Y. Tai, Y.-S. Hu, H.-W. Chen, and H.-S. Chen, “A 0.85fj/conversion-step 10b 200ks/s subranging sar adc in 40nm cmos,” IEEE Proceedings of the International Solid-State Circuits Conference (ISSCC), pp. 196–198, 2014.
    [46] Z. Zhu and Y. Liang, “A 0.6-v 38-nw 9.4-enob 20-ks/s sar adc in 0.18μm cmos for medical implant devices,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 62, no. 9, pp. 2167–2176, 2015.
    [47] Z. Zhu and Y. Liang, “A 1.2v 10b 20msample/s non-binary successive approximation adc in 0.13μm cmos,” IEEE Proceedings of the International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 176–177, 2002.
    [48] P. Harpe, E. Cantatore, and A. v. Roermund, “A 10b/12b 40 ks/s sar adc with data driven noise reduction achieving up to 10.1b enob at 2.2 fj/conversion-step,” IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3001–3018, 2013.
    [49] P. M. Ahmadi and W. Namgoong, “Comparator power minimization analysis for sar adc using multiple comparators,” IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, vol. 62, no. 10, pp. 2369–2379, 2015.
    [50] A. Shikata, R. Sekimoto, T. Kuroda, and H. Ishikuro, “A 0.5 v 1.1 ms/sec 6.3 fj/conversion-step sar-adc with tri-level comparator in 40 nm cmos,” IEEE Journal of Solid-State Circuits, vol. 47, no. 4, pp. 1022–1030, 2012.
    [51] J. Sauerbrey, D. Schmitt-Landsiedel, and R. Thewes, “A 0.5-v 1μw successive approximation adc,” IEEE Journal of Solid-State Circuits, vol. 38, no. 7, pp. 1261–1265, 2003.
    [52] Chun-Cheng Liu, ” Design of High-Speed Energy-Efficient Successive-
    Approximation Analog-to-Digital Converters ”. National Cheng Kung University Dissertation for Doctor of Philosophy , 2010.
    [53] T. Delbruck, “’bump’ circuits for computing similarity and dissimilarity of analog voltages,” INNS Proceedings of the International Joint Conference on Neural Networks, vol. 1, pp. 475–479, 1991.
    [54] B. A. Minch, “An inverted cmos class-ab transconductor featuring rail-to-rail common-mode input range and constant transconductance gain,” IEEE Biomedical Circuits and Systems Conference, pp. 428–431, 2014.
    [55] G. Serrano and P. Hasler, “A precision low-tc wide-range cmos current reference,”IEEE Journal of Solid-State Circuits, vol. 43, no. 2, pp. 558–565, 2008.
    [56] A. Dilello, S. Andryzcik, B. M. Kelly, B. Rumberg, and D. W. Graham, “Temperature compensation of floating-gate transistors in field-programmable analog arrays,”IEEE Proceedings of the International Symposium on Circuits and Systems, pp. 1–4, 2017.
    [57] S. Shan, H. Toreyin, J. Hasler, and A. Natarajan, “Temperature sensitivity and compensation on a reconfigurable platform,” IEEE Transactions on Very Large Scale Integration Systems, vol. 26, no. 3, pp. 604–607, 2018.
    [58] M. Gu and S. Chakrabartty, “Subthreshold, varactor-driven cmos floating-gate current memory array with less than 150-ppm/k temperature sensitivity,” IEEE Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2846–2856, 2012.
    [59] R. S. Assaad and J. Silva-Martinez, “The recycling folded cascode: Ageneral enhancement of the folded cascode amplifier,” IEEE Journal of Solid-State Circuits, vol. 44, no. 9, pp. 2535–2542, 2009.
    [60] D. Du and K. M. Odame, “A bandwidth-adaptive preamplifier,” IEEE Journal of Solid-State Circuits, vol. 48, no. 9, p. 2142—2153, 2013.
    [61] S.-J. Jung, S.-K. Hong, and O.-K. Kwon, “Low-power low-noise amplifier using attenuation-adaptive noise control for ultrasound imaging systems,” IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no. 5, p. 108—116, 2017.
    [62] S. Mondal, R. J. C.-L. Hsu, and D. A. Hall, “A dynamically reconfigurable ecg analog front-end with a 2.5x data-dependent power reduction,” IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no. 5, p. 1066—1078, 2021.
    [63] S.-Y. Peng, P. E. Hasler, and D. V. Anderson, “An analog programmable multidimensional radial basis function based classifier,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 54, no. 10, p. 2148—2158, 2007.
    [64] D. Kahng and S. Sze, “A floating-gate and its application to memory devices,” Bell System Technical Journal, vol. 46, no. 4, p. 1288—1295, 1967.
    [65] Y. Ma, T. G. Gilliland, B. Wang, R. Paulsen, C.-H. W. A. Pesavento, H. Nguyen, T. Humes, and C. Diorio, “Reliability of pfet eeprom with 70-å tunnel oxide manufactured in generic logic cmos processes,” IEEE Transactions on Device and Materials Reliability, vol. 4, no. 3, p. 353—358, 2004.
    [66] J. Lu, S. Young, I. Arel, and J. Holleman, “A 1 tops/w analog deep machine-learning engine with floating-gate storage in 0.13μm cmos,” IEEE Journal of Solid-State Circuits, vol. 50, no. 1, p. 270—281, 2015.
    [67] S.-H. Song, K. C. Chun, and C. H. Kim, “A bit-by-bit re-writable eflash in a generic 65 nm logic process for moderate-density nonvolatile memory applications,” IEEE Journal of Solid-State Circuits, vol. 49, no. 8, p. 1861—1871, 2014.
    [68] M. Kim, J. Song, and C. H. Kim, “Reliability characterization of logic-compatible nand flash memory based synapses with 3-bit per cell weights and 1μa current steps,”IEEE International Reliability Physics Symposium, p. 1—4, 2020.
    [69] S. Larimian, M. R. Mahmoodi, and D. B. Strukov, “Lightweight integrated design of puf and trng security primitives based on eflash memory in 55-nm cmos,” IEEE Transactions on Electron Devices, vol. 67, no. 4, p. 1586—1592, 2020.
    [70] B. Razavi, “The bootstrapped switch [a circuit for all seasons],” IEEE Solid-State Circuits Magazine, vol. 7, no. 3, pp. 12–15, 2015.
    [71] Y. Hou, K. Yousef, M. Atef, G. Wang, and Y. Lian, “A 1-to-1-khz, 4.2-to-544-nw, multi-level comparator based level-crossing adc for iot applications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 10, pp. 1390–1394, 2018.
    [72] B. Razavi, “The strongarm latch [a circuit for all seasons],” IEEE Solid-State Circuits Magazine, vol. 7, no. 2, pp. 12–17, 2015.
    [73] P. M. Figueiredo and J. C. Vital, “Kickback noise reduction techniques for cmos latched comparators,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 7, pp. 541–545, 2006.
    [74] A. S. et al, “Bio-witel: A low-power integrated wireless telemetry system for healthcare applications in 401–406 mhz band of medradio spectrum,” IEEE Journal of Biomedical and Health Informatics, vol. 22, no. 2, pp. 483–494, 2018.
    [75] C. P. Huang, H. W. Ting, and S. J. Chang, “Analysis of nonideal behaviors based on inl/dnl plots for sar adcs,” IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 8, pp. 1804–1817, 2016.
    [76] R. G. C. et al, “The flipped voltage follower: a useful cell for low-voltage low-power circuit design,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 52, no. 7, pp. 1276–1291, 2005.
    [77] 謝博荃, ” The Circuit Design of Dual Bypass Switching SAR ADC Suitable for Physiological Signal Detection and High Speed SAR ADC”. 國立臺灣科技大學碩士論文, 2021.
    [78] N. Sayiner, H. V. Sorensen, and T. R. Viswanathan, “A level-crossing sampling scheme for a/d conversion,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 43, no. 4, pp. 335–339, 1996.
    [79] H. Wang, F. Schembari, and R. B. Staszewski, “An event-driven quasi-level-crossing delta modulator based on residue quantization,” IEEE Journal of Solid-State Circuits, vol. 55, no. 2, pp. 298–311, 2020.
    [80] B. Yazdani and S. J. Ashtiani, “A low power fully differential level-crossing adc with low power charge redistribution input for biomedical applications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 864–868, 2022.
    [81] H. Wang, V. Nguyen, F. Schembari, and R. B. Staszewski, “An adaptive-resolution quasi-level-crossing delta modulator with vco-based residue quantizer,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 2828–2832, 2020.
    [82] H. Wang, F. Schembari, M. Miśkowicz, and R. B. Staszewski, “An adaptiveresolution quasi-level-crossing-sampling adc based on residue quantization in 28-nm cmos,” IEEE Solid-State Circuits Letter, vol. 1, no. 8, pp. 178–181, 2018.
    [83] K. Kozmin, J. Johansson, and J. Delsing, “Level-crossing adc performance evaluation toward ultrasound application,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 56, no. 8, pp. 1708–1719, 2009.
    [84] T. Wang, D. Wang, P. J. Hurst, B. C. Levy, and S. H. Lewis, “A level-crossing
    analog-to-digital converter with triangular dither,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 56, no. 9, pp. 2089–2099, 2009.
    [85] D. Hand and M. S. W. Chen, “A non-uniform sampling adc architecture with embedded alias-free asynchronous filter,” IEEE Global Communications Conference, pp. 3707–3712, 2012.
    [86] T. F. Wu, S. Dey, and M. S. W. Chen, “A nonuniform sampling adc architecture with reconfigurable digital anti-aliasing filter,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 63, no. 10, pp. 1639–1651, 2016.
    [87] X. Qian and T. H. Teo, “A low-power comparator with programmable hysteresis level for blood pressure peak detection,” TENCON 2009 - 2009 IEEE Region 10 Conference, pp. 1–4, 2009.
    [88] A. Joshi, R. Deshmukh, and R. Patrikar, “A hysteresis controlled resolution for level crossing sampling adc,” 2017 14th IEEE India Council International Conference (INDICON), pp. 1–5, 2017.
    [89] T. Delbruck, “Bump circuits for computing similarity and dissimilarity of analog voltage,” IEEE Proceedings of the International Neural Network Society, vol. 1, pp. 475–479, 1993.
    [90] Z. J. L. et al, “A transient-enhanced autonomous current adaptation buffer amplifier,”IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 10, pp. 3727–3731, 2023.
    [91] M. A. Akram, W. Hong, and I. C. Hwang, “Capacitorless self-clocked all-digital lowdropout regulator,” IEEE Journal of Solid-State Circuits, vol. 54, no. 1, pp. 266–276, 2019.
    [92] T. M. et al, “Pseudo asynchronous level crossing adc for ecg signal acquisition,”IEEE Transactions on Biomedical Circuits and Systems, vol. 11, no. 2, pp. 267–278, 2017.
    [93] T. F. Wu and M. S. W. Chen, “A noise-shaped vco-based nonuniform sampling adc with phase-domain level crossing,” IEEE Journal of Solid-State Circuits, vol. 54, no. 3, pp. 623–635, 2019.

    無法下載圖示 全文公開日期 2025/02/02 (校內網路)
    全文公開日期 2029/02/02 (校外網路)
    全文公開日期 2029/02/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE