簡易檢索 / 詳目顯示

研究生: 劉立涵
Li-Han Liu
論文名稱: 應用於生醫領域之高功率效能高動態範圍感測放大器與可重組化低功耗高效能穩壓器之積體電路設計
The Integrated Circuit Design of A Power-Efficient Large-Dynamic-Range Sensing Amplifier and A Reconfigurable Low-Power High-Performance Low-Drop-Out Voltage Regulator for Biomedical Applications
指導教授: 彭盛裕
Sheng-Yu Peng
口試委員: 呂良鴻
none
何盈杰
none
鍾勇輝
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 57
中文關鍵詞: 低功耗高功率效能高動態範圍感測放大器放大器穩壓器可重組化
外文關鍵詞: Low power consumption, Power efficient, large dynamic range, amplifier, regulator, LDO, Reconfigurable
相關次數: 點閱:343下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,提出了應用於生理訊號感測裝置或物聯網系統之低雜訊放大
    器與低功耗穩壓器。為了達到可重組化與低功耗,懸浮閘技術被採用於電路中。
    在生醫領域或物聯網應用中,提高放大器的動態範圍,能夠降低訊號的失
    真,有利於訊號的分析與判讀。本論文提出了一個懸浮閘平衡型虛擬電阻,利用
    電容分壓的方式,使電晶體的閘極端電壓為其源極與集極的平均值,相較於其他
    文獻使用之虛擬電阻擁有較高的線性度,並且顯著地改善了電容式回授放大器在
    低頻時的線性度與動態範圍。本論文所提出的低雜訊放大器在供給電壓為2.5 V、
    靜態電流為3.6 u A 與頻寬為10 kHz 下,動態範圍可以達到63.7 dB。另外,雜訊
    效率因素在100Hz、10 kHz 與100 kHz 的頻寬設定下,分別為1.88、1.93 與2.05。
    為了提供生理訊號感測或物聯網應用中的裝置穩定電壓,本論文提出一個由
    懸浮閘nMOS 導通電晶體、自適性AB 類放大器與懸浮閘電容回授和參考電壓
    所組成的低功耗穩壓器。懸浮閘nMOS 導通電晶體改善穩壓器的電源雜訊抑制
    能力,並保有低壓降的特性;另外,自適性AB 類放大器提高了穩壓器的反應速
    度,且擁有很低的功耗;最後,懸浮閘電容回授和參考電壓的採用,使本論文提
    出之穩壓器不需要能隙電路來產生參考電壓,藉由調整懸浮閘內的電荷,達到輸
    出電壓可編程的特性。從量測資料顯示,穩壓器的輸出電壓為1.2 V 至2.5 V,靜
    態電流低於1 u A,擁有-75 dB 的電源雜訊抑制能力。在200 mV 的電壓降下,電
    流效率高於99.96%。當附載電流為200 uA 時,穩壓器的最大附載電容可以達到
    50 nF。不採用能隙參考電路,本論文提出之穩壓器溫度係數為100ppm/◦C。


    Two reconfigurable power-efficient high-performance circuits, a low-noise amplifier and a linear voltage regulator, are proposed in this thesis, targeting sensing and monitoring devices for biomedical applications and for internet of things (IoT). Floating-gate transistors are employed to enable reconfigurability and to achieve low power consumption. In the proposed low-noise amplifier, a floating-gate based pseudo resistor is proposed to substantially improve circuit linearity as well as dynamic range at low frequencies. The pseudo resistor is made of a floating-gate transistor, of which gate voltage is kept the mean value of the drain and the source voltages. In this manner, the achieved dynamic range is more than 62.8 dB with total harmonic distortion better than 60 dB across the whole bandwidth. Using a supply voltage of 2.5 V, an amplifier consumes 3.6 uA of current to achieve a bandwidth of 10 kHz with a dynamic range of 63.7 dB. From measurements, the noise efficiency factors corresponding to the bandwidth settings of 100Hz, 1 kHz, and 10 kHz are 1.88, 1.93, and 2.05, respectively.

    A reconfigurable low-power high-performance output-capacitor-less low-drop-out (LDO) voltage regulator is also proposed in this thesis. This LDO consists of a floatinggate nMOS pass transistor, an adaptively biased error amplifier with a class-AB input stage, and capacitive circuits for voltage reference generation and output feedback sensing. Consequently, the LDO can achieve a low drop-out voltage of one VDSsat, high power supply rejection, fast transient responses with low quiescent current, and programmable output voltage and rejection bandwidth. From the measurements, with the quiescent current level below 1 uA, the maximum load current is 2.5 mA with a drop-out-voltage of 200 mV. The pogrammable output range is 1.8 V to 2.5 V with power supply rejection of -75 dB. The current efficiency is higher than 99:96%. The maximum output load capacitance can be as large as 50 nF under the condition of 200 A load current. Without using a bandgap reference circuit, the measured output voltage temperature coefficient is 100ppm/◦C.

    1 Introduction 2 A Power-Efficient Large-Dynamic-Range Sensing Amplifier 3 A Reconfigurable Low-Power High-Performance Low-Drop-Out Voltage Regulator 4 Conclusion and Feature Works

    [1] T.-Y. Wang, M.-R. Lai, C. Twigg, and S.-Y. Peng, “A fully reconfigurable low-noise biopotential sensing amplifier with 1.96 noise efficiency factor,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 3, pp. 411–422, 2014.
    [2] R. R. Harrison and C. Charles, “A low-power low-noise cmos amplifier for neural recording applications,” IEEE Journal of Solid–State Circuits, vol. 38, no. 6, pp. 958–965, 2003.
    [3] X. Zou, X. Xu, L. Yao, and Y. Lian, “A 1-V 450-nW fully integrated programmable biomedical sensor interface chip,” IEEE Journal of Solid–State Circuits, vol. 44, no. 4, pp. 1067–1077, 2009.
    [4] W. Wattanapanitch, M. Fee, and R. Sarpeshkar, “An energy-efficient micropower neural recording amplifier,” IEEE Transactions on Biomedical Circuits and Systems, vol. 1, no. 2, pp. 136–147, 2007.
    [5] V. Majidzadeh, A. Schmid, , and Y. Leblebici, “Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, no. 3, pp. 262–271, 2011.
    [6] L. Liu, X. Zou, W. Goh, R. Ramamoorthy, G. Dawe, and M. Je, “800 nW 43 nV/ phz neural recording amplifier with enhanced noise efficiency factor,” IEEE Electronics Letters, vol. 48, no. 9, pp. 479–480, 2012.
    [7] J. Guo, J. Yuan, J. Huang, J. K. Law, C. Yeung, and M. Chan, “32.9 nV/phz 60.6 dB THD dual-band micro-electrode array signal acquisition IC,” IEEE Journal of Solid–State Circuits, vol. 47, no. 5, pp. 1209–1220, 2012.
    [8] Y. Tseng, Y. Ho, S. Kao, and C. Su, “A 0.09 W low power front-end biopotential amplifier for biosignal recording,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 5, pp. 508–516, 2012.
    [9] M. S. J. Steyaert and W. M. C. Sansen, “A micropower low-noise monolithic instrumentation amplifier for medical purposes,” IEEE Journal of Solid–State Circuits, vol. 22, no. 6, pp. 1163–1168, 1987.
    [10] D. W. Grasse and K. A. Moxon, “Correcting the bias of spike field coherence estimators due to a finite number of spikes,” Journal of Neurophysiology, vol. 104, no. 1, pp. 548–558, 2010.
    [11] R. F. Yazicioglu, S. Kim, T. Torfs, H. Kim, and C. V. Hoof, “A 30 W analog signal processor asic for portable biopotential signal monitoring,” IEEE Journal of Solid–State Circuits, vol. 46, no. 1, pp. 209–223, 2011.
    [12] K. N. Leung and P. K. T. Mok, “A capacitor-free cmos low-dropout regulator with damping-factor-control frequency compensation,” IEEE Journal of Solid–State Circuits, vol. 38, no. 10, pp. 1691–1702, 2003.
    [13] E. N. Y. Ho and P. K. T. Mok, “Wide-loading-range fully integrated LDR with a power-supply ripple injection filter,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 6, pp. 356–360, 2012.
    [14] X. L. Tan, S. S. Chong, P. K. Chan, and U. Dasgupta, “A LDO regulator with weighted current feedback technique for 0.47 nF-–10 nF capacitive load,” IEEE Journal of Solid–State Circuits, vol. 49, no. 11, pp. 2658–2672, 2014.
    [15] M. El-Nozahi, A. Amer, J. Torres, K. Entesari, and E. Sanchez-Sinencio, “High PSR low drop-out regulator with feed-forward ripple cancellation technique,” IEEE Journal of Solid–State Circuits, vol. 45, no. 3, pp. 565–577, 2010.
    [16] C. J. Park, M. Onabajo, and J. S. Martinez, “External capacitor-less low drop-out regulator with 25 dB superior power supply rejection in the 0.4–4 MHz range,” IEEEJournal of Solid–State Circuits, vol. 49, no. 2, pp. 486–501, 2014.
    [17] X. Qu, Z.-K. Zhou, B. Zhang, and Z.-J. Li, “An ultralow-power fast-transient capacitor-free low-dropout regulator with assistant push–pull output stage,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 2, pp. 96–100, 2013.
    [18] S. S. Chong and P. K. Chan, “A 0.9-uA quiescent current output-capacitorless LDO regulator with adaptive power transistors in 65-nm CMOS,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 60, no. 4,pp. 1072–1081, 2013.
    [19] J. Guo and K. N. Leung, “A 6-uW chip-area-efficient output-capacitorless LDO in 90-nm CMOS technology,” IEEE Journal of Solid–State Circuits, vol. 45, no. 9, pp. 1896–1905, 2010.
    [20] Y. I. Kim and S. S. Lee, “A capacitorless LDO regulator with fast feedback technique and low-quiescent current error amplifier,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 6, pp. 326–330, 2013.
    [21] P. Y. Or and K. N. Leung, “An output-capacitorless low-dropout regulator with direct voltage-spike detection,” IEEE Journal of Solid–State Circuits, vol. 45, no. 2, pp. 458–466, 2010.
    [22] S.-Y. Peng, P. E. Hasler, and D. V. Anderson, “An analog programmable multidimensional radial basis function based classifier,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 54, pp. 2148–2158, 2007.
    [23] P. Pavan, L. Larcher, and A. Marmiroli, Floating Gate Devices: Operation and Compact Modeling. NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW: Kluwer Academic Publishers, 2004.
    [24] Y. Leblebici and S.-M. Kang, “Modeling and simulation of hot-carrier-induced device degradation in MOS circuits,” IEEE Journal of Solid–State Circuits, vol. 28, no. 5, pp. 585–595, 1993.
    [25] S. S. Chung, C.-M. Yih, S.-M. Cheng, and M.-S. Liang, “A new technique for hot carrier reliability evaluations of flash memory cell after long-term program/erase cycles,” vol. 46, no. 9, pp. 1883–1889, 1999.
    [26] Y. Ma, T. G. Gilliland, B. Wang, R. Paulsen, A. Pesavento, C.-H. Wang, H. Nguyen, T. Humes, and C. Diorio, “Reliability of pFET eeprom with 70-åtunnel oxide manufactured in generic logic CMOS processes,” vol. 4, no. 3, pp. 353–358, 2004.
    [27] V. Srinivasan, G. J. Serrano, J. Gray, and P. Hasler, “A precision cmos amplifier using floating-gate transistors for offset cancellation,” IEEE Journal of Solid–State Circuits, vol. 42, no. 2, pp. 280–291, 2007.
    [28] V. Srinivasan, G. J. Serrano, C. M. Twigg, and P. Hasler, “A floating-gate-based programmable cmos reference,” IEEE Journal of Solid–State Circuits, vol. 55, no. 11, pp. 3448–3456, 2008.
    [29] D. W. Graham, E. Farquhar, B. Degnan, C. Gordon, and P. Hasler, “Indirect programming of floating-gate transistors,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 54, no. 5, pp. 951–963, 2007.
    [30] S. Mendis, K. Thygesen, K. Kuulasmaa, S. Giampaoli, M. Mahonen, K. N. Blackett, and L. Lisheng, “World health organization definition of myocardial infarction: 2008-09 revision,” International Journal of Epidemiology, vol. 40, no. 5, pp. 139–146, 2011.
    [31] Y. Tsividis, M. Banu, and J. Khoury, “Continuous-time MOSFET-C filters in VLSI,” IEEE Journal of Solid–State Circuits, vol. 33, no. 2, pp. 125–140, 1986.
    [32] M. Tavakoli and R. Sarpeshkar, “A sinh resistor and its application to tanh linearization,”IEEE Journal of Solid–State Circuits, vol. 40, no. 2, pp. 536–543, 2005.
    [33] E. Özalevli and P. E. Hasler, “Tunable highly linear floating-gate cmos resistor using common-mode linearization technique,” IEEE Transactions on Circuits and SystemsI: Fundamental Theory and Applications, vol. 55, no. 4, pp. 999–1010, 2008.
    [34] B. A. Minch, “A simple class-AB transconductor in CMOS,” in IEEE Proceedings of the International Symposium on Circuits and Systems, May 2008.
    [35] T. Delbruck, “Bump circuits for computing similarity and dissimilarity of analog voltage,” in IEEE Proceedings of the International Neural Network Society, pp. 475– 479, Oct. 1991.

    無法下載圖示 全文公開日期 2020/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE