簡易檢索 / 詳目顯示

研究生: 柳耀鈞
Yao-Chun Liu
論文名稱: 球墨鑄鐵表面被覆陶瓷粉末及合金元素之耐磨耗行為研究
The Study of Alloying Elements on Wear Resistance Behavior in Ductile Iron Surface Clad with Ceramics Powder
指導教授: 林原慶
Yuan-Ching Lin  
口試委員: 陳永傳
Yong-Chwang Chen
鄭偉鈞
Wei-Chun Cheng  
卓育賢
Yu-Hsien Cho
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 240
中文關鍵詞: 碳化矽碳化鈦氬焊被覆臨場形成回火耐磨耗顯微組織
外文關鍵詞: SiC, TiC, GTAW, clad, in-situ, tempering, microstructure, wear performance
相關次數: 點閱:357下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要為探討利用氬銲被覆陶瓷粉末及不同合金粉末於球墨鑄鐵表面之磨耗行為研究,主要以SiC陶瓷粉末為基礎粉末,並添加Cr、Mo、Ni等元素粉末,以探討不同元素對被覆層的影響,並藉由被覆層中的顯微組織及成分等冶金條件,利用各式分析儀器,FE-SEM(場發射掃描式電子顯微鏡)、維克氏硬度試驗機、EPMA(電子微探針儀)、X-ray繞射儀進行各種分析,以找出影響耐磨耗能力的因素,此外,並以Ti粉末與TiC陶瓷粉末添加Ni元素粉末做為比較組,了解不同粉末對被覆層的影響差異。
    研究結果顯示,SiC系列被覆層屬於析出強化型,主要析出相為Fe3C,而被覆Ti與TiC-Ni被覆層以TiC為強化相,另外在有添加Ti的被覆層中,會有臨場形成(in-situ)TiC強化相產生。在磨耗試驗結果顯示,Ti與TiC系列被覆層的耐磨耗能力明顯的優於SiC系列之被覆層,這歸因於兩者強化相的分佈型態與成長方向不同所致;SiC系列被覆層在經過225°C回火處理後,SiC-Cr被覆層之磨耗量在經回火處理前後之差異較小,磨耗量較為穩定;而SiC-Ni被覆層在經過回火處理後,耐磨耗能力是最差的;但在高滑動速度條件下,經回火處理後之SiC系列被覆層有較高之磨耗量。

    整體而言,兩種不同系列的被覆層均能有效的提升基材硬度,對耐磨耗能力都有一定程度之提升。


    In this thesis, ceramic powders and ceramic powders mixed with different alloy elements were cladded on ductile iron surfaces by gas tungsten arc welding(GTAW) process to investigate the wear behavior of the clad layers. SiC was the basal powder, and the elements of Cr, Mo and Ni were added to discuss the differences of the clad layer by different elements, which includes microstructure and composition in clad layer. Microstructures of the clad layers were analyzed by a field-emission scanning electron microscope (FE-SEM), a Vickers microhardness tester, an electron probe microanalyzer (EPMA) and an X-ray diffractometer (XRD) to find out the major parameter that influence the wear resistance of the clad layer. In addition, the clad layers of Ti and TiC powders added with Ni element were as the compared group to discuss the influences of cladd layers with different powders.

    Experimental results show that the series of SiC clad layers is strengthed by precipitation, and the major reinforcement phase is Fe3C; the reinforcement TiC is the major phase of Ti and TiC-Ni clad layers. In addition, the reinforcements TiC is synthesized in-situ in cladd layers by adding Ti element. The wear test results indicate that the wear performance of Ti and TiC-Ni clad layers is better than that of SiC series cladd layers, and which are attributed to both of reinforcement arrangement and growth direction difference. When the series of SiC clad layers is tempered at 225°C, the wear loss for the SiC-Cr clad layer has a tiny difference before and after tempering, and the wear loss is steady; the SiC-Ni cladding layer has the worst wear resistance after tempering at the higher sliding speed. However, the series of SiC clad layers has the higher wear loss. In conclusion, the hardness and wear resistance of SiC, Ti and TiC-Ni clad layers are higher than that of the substrates obviously.

    摘要 I Abstract III 致謝 V 目錄 VI 表索引 XI 圖索引 XII 第一章 前言 1 第二章 文獻回顧 3 2-1 表面被覆技術之介紹 3 2-2 鑄鐵基材介紹 4 2-2-1 鑄鐵表面改質的相關研究 6 2-3 合金元素對鑄鐵的影響 9 2-3-1 添加合金元素之特性介紹【11】 9 2-3-2 合金元素的被覆相關研究 11 2-4 惰性氣體鎢極電弧銲被覆 13 2-5 熔融焊接之凝固特徵與型態 15 2-5-1 顯微結構 15 2-5-2 焊道外觀型態 17 2-6 被覆陶瓷粉末的特性 18 2-6-1 碳化矽(SiC)陶瓷粉末的相關研究 19 2-6-2 碳化鈦(TiC)陶瓷粉末的相關研究 22 2-7 化合物對被覆層硬度之影響 25 2-7-1 碳與合金元素反應之化合物 25 2-7-2 金屬間化合物 26 2-8 被覆層強化機構 26 2-8-1 細晶粒強化 (Fine Grain Size Strengthening) 27 2-8-2 散佈強化 (Dispersion Strengthening) 27 2-8-3 析出強化 (Precipitation Strengthening) 27 2-8-4 麻田散鐵強化 (Martensite Strengthening) 28 2-8-5 固溶強化 (Solid Solution Strengthening) 28 2-9 磨耗機制 (Wear Mechanism) 29 2-9-1 刮磨磨耗 (Abrasive Wear) 30 2-9-2 黏著磨耗 (Adhesive Wear) 32 2-9-3 氧化磨耗 (Oxidative Wear) 33 2-9-4 表面疲勞磨耗 (Surface Fatigue Wear) 35 2-10 摩擦理論 36 2-10-1 機械互鎖理論(Mechanical Interlocking) 37 2-10-2 分子吸引(Molecular Attraction) 37 2-10-3 靜電力(Electrostatic Forces) 37 2-10-4 熔接、剪斷與犁割(Welding Shearing and Ploughing) 37 2-11 接觸應力之計算 38 2-12 碳當量之計算 40 第三章 實驗方法及程序 41 3-1 試片製作 43 3-1-1 基材 43 3-1-2 混合粉末 45 3-1-3 預敷熔填銲條 46 3-1-4 磨耗上試片製作 47 3-1-5 磨耗下試片處理 48 3-2 氬焊被覆處理 50 3-2-1 被覆試片校正 51 3-2-2 氬焊被覆參數 51 3-3 被覆層機械性質試驗測試 52 3-4 被覆層顯微組織結構的觀察與成分分析 53 3-5 磨耗試驗 54 3-5-1 磨耗試驗之條件 54 3-5-2 磨耗量之量測與計算 55 3-5-3 磨耗表面之觀察與分析 57 3-6 磨耗及周邊分析儀器之介紹 57 3-6-1 磨耗試驗設備 57 3-6-2 分析儀器設備介紹 58 3-7 被覆粉末之形貌觀察 60 3-8 基材球化率之量測 62 第四章 結果與討論 64 4-1 入熱量對被覆層之影響 64 4-1-1 入熱量對被覆層表面形貌之影響 64 4-1-2 入熱量對被覆層深度之影響 67 4-2 被覆層成分分析及微觀結構 69 4-2-1 各被覆層顯微結構之分析 69 4-3 合金元素對被覆層硬度分佈之影響 144 4-3-1 SiC系列被覆層硬度 144 4-3-2 回火SiC系列被覆層回火後的硬度分佈 147 4-3-3 Ti被覆層及TiC-Ni被覆層硬度 148 4-3-4 SiC、Ti與TiC-Ni被覆層硬度比較 150 4-4 不同被覆層的耐磨耗能力分析 151 4-4-1 鑄態球墨鑄鐵基材之耐磨耗能力評估 151 4-4-2 SiC被覆層及其添加合金被覆層之耐磨耗能力評估 156 4-4-3 回火SiC被覆層及添加合金被覆層之耐磨耗能力評估 174 4-4-4 TiC系列被覆層之耐磨耗能力評估 191 4-4-5 回火處理對SiC系列被覆層之耐磨耗能力影響 202 4-4-6 Ti及TiC被覆層之總耐磨耗能力評估 205 第五章 結論與建議 207 5-1 結論 207 5-2 未來研究方向與建議 209 參考文獻 210  

    1.A. Abdel Aal, Khaled M. Ibrahim, and Z. Abdel Hamid, "Enhancement of wear resistance of ductile cast iron by Ni-SiC composite coating", Wear, vol.260, pp.1070-1075, 2006.
    2.A. Amirsadeghi, and M. Heydarzadeh Sohi, "Comparison of the influence of molybdenum and chromium TIG surface alloying on the microstructure, hardness and wear resistance of ADI", Journal of materials Processing Technology, vol.201, pp.673-677, 2008.
    3.K. Holmberg, A. Matthews, Coatings Tribology, Elsevier, Armsterdam, Netherland, 1994.
    4.I.M. Hutchings, Friction and Wear of Engineering Materials, Boca Raton, CRC Press, 1992.
    5.M.A. Islam, A.S.M.A. Haseeb, and A.S.W. Kurny, "Study of wear of as-cast and heat-treated spheroidal graphite cast iron under dry sliding conditions", Wear, vol.188, pp.61-65, 1995.
    6.Jin-Jung Jeong, Bong-Yong Jeong, Myung-Ho Kim, and Chongmu Lee, "Characterization of TiN coatings on the plasma nitride spheroidal graphite cast iron substrates", Surface and coatings Technology, vol.150, pp.24-30, 2002.
    7.K.Y. Benyounis*, O.M.A. Fakron, J.H. Abboud, A.G. Olabi, and M.J.S. Hashmi, "Surface melting of nodular cast iron by Nd-YAG laser and TIG", Journal of materials Processing Technology , vol.170, pp.127-132, 2005.
    8.Han-Young Lee, Jung-Kyun Roe, and Akira Ikenaga, "Sliding wear properties for Ni-Al based intermetallic compound layer coated on ductile iron by combustion synthesis", Wear , vol.260, pp.83-89, 2006.
    9.Chengyun Cui, Zuoxing Guo, Hongying Wang, and Jiandong Hu, "In situ TiC particles reinforced grey cast iron composite fabricated by laser cladding of Ni-Ti-C system", Journal of materials Processing Technology, vol.183, pp.380-385, 2007.
    10.M. Shamanian, S.M.R. Mousavi Abarghouie, and S.R. Mousavi Pour, "Effect of surface alloying on microstructure and wear behavior of ductile iron", Material and design, 2010.
    11.中華民國鑄造學會,球墨鑄鐵手冊 Ductile iron Handbook, No.183, 1992.
    12.William F. Smith, Foundations of materials Science and Engineering,3E, Mc Graw Hill, 2005.
    13.B. Uyulgan, H. Cetinel, I. Ozdemir, C. Tekmen, S.C. Okummus, and E. Celik, "Friction and wear properties of Mo coatings on cast-iron substrates", Surface and coatings Technology, vol.174-175, pp.1082-1088, 2003.
    14.M.B. Karamis, K. Y1ld1zl1, and H. Cak1rer, "Wear behavior of Al-Mo-Ni composite coating at elevated temperature", Wear, vol.258, pp.744-751, 2005.
    15.林原慶、高鈺涵、章光耀、林育奇,"合金元素Ni對鈦合金表面被覆碳化硼之微結構與磨耗行為的影響", 中國機械工程學會第二十六屆全國學術研討會論文集,C05-008固力與材料組,台灣台南市、成功大學 (11/2009).
    16.Chia-Ming Chang, Yen-Chun Chen, and Weite Wu, "Microstructural and abrasive characteristics of high carbon Fe-Cr-C hardfacing alloy", Tribology international, vol.43, pp.929-934, 2010.
    17.王振欽,焊接學,高立圖書有限公司,2006
    18.J. W. Giachino, Welding skills and practices, 1986.
    19.G. B. Kenneth, Surface Engineering for wear resistance, 1988.
    20.J.F. Lancaster, Metallurgy of welding, London, Chapman & Hall, 1993.
    21.H.F. Brinson, Engineered materials handbook, Vol. 4, ASM International, Metals Park, Ohio, 1987.
    22.Sen Yang, Na-Chen, Wenjin Liu, and Minlin Zhong, "In situ formation of MoSi2/SiC composite coating on pure Al by laser cladding", Materials Letters , vol.57, pp.3412-3416, 2003.
    23.Y.S. Tian, C.Z. Chen, L.X. Chen, and Q.H. Huo, "Microstructures and wear properties of composite coatings produced by laser alloying of Ti-6Al-4V with graphite and silicon mixed powders", Materials Letters, vol.60, pp.109-113, 2006.
    24.F. Lusquiños, J. Pou, F. Quintero, and M. Pérez-Amor, "Laser cladding of SiC/Si composite coating on Si-SiC ceramic substrates", Surface and coatings Technology, vol.202, pp.1588-1593, 2008.
    25.Jyotsna Dutta Majumdar, Ajeet Kumar, and Lin Li, "Direct laser cladding of SiC dispersed AISI 316L stainless steel", Tribology International, vol.42, pp.750-753, 2009.
    26.林育奇,Ti-6Al-4V合金表面被覆陶瓷粉末之微結構及磨耗行為研究,國立台灣科技大學碩士論文,2010。
    27.Y.T. Pei, and T.C. Zuo, "Gradient microstructure in laser clad TiC-reinforced Ni-alloy composite coating", Material Science and Engineering , vol.A241, pp.259-263, 1998.
    28.伍凱義,鑄鐵表面被覆耐磨耗材料之研究,國立台灣科技大學碩士論文,2000。
    29.Y. Chen, and H.M. Wang, "Growth morphology and mechanism of primary TiC carbide in laser clad TiC/FeAl composite coating", Materials Letters, vol.57, pp.1233-1238, 2003.
    30.Sen Yang, Na-Chen, Wenjin Liu, Minlin Zhong, Zhanjie Wang and Hiroyuki Kokawa, "Fabrication of nickel composite coatings reinforced with TiC particles by laser cladding", Surface and coatings Technology, vol.183, pp.254-260, 2004.

    31.Y.J. Dong, and H.M. Wang, "Microstructure and dry sliding wear resistance of laser clad TiC reinforced Ti-Ni-Si intermetallic composite coating ", Surface and coatings Technology, vol.204, pp.731-735, 2009.
    32.Li Jianing, Chen Chuanzhong, and Zong Lei "Microstructure characteristics of Ti3Al/TiC ceramic layer deposited by laser cladding", Int. Journal of Refractory Metals and Hard Materials, vol.29, pp.49-53, 2011.
    33.Limin Zhang, Dongbai Sun, and Hongying Yu, "Effect of niobium on the microstructure and wear resistance of iron-based alloy coating produced by plasma cladding", Materials Science and Engineering, vol.A490, pp.57-61, 2008.
    34.X.H. Wang, M. Zhang, X.M. Liu, S.Y. Qu, and Z.D. Zou, "Microstructure and Wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding", Surface and coatings Technology, vol.202, pp.3600-3606, 2008.
    35.K.H. Zum Gahr, "Microstructure and Wear of material", Tribology Series, vol.10, 1987.
    36.A.R. Lansdown, &A. L. Price, "MATERIAL TO RESIST WEAR", 1986.
    37.C. Horst, Tribology : a systems approach to the science and technology of friction, lubrication and wear, Amsterdam, Elsevier Scientific Pub. Co., New York, 1978.
    38.V.V. Pokropivny, V.V. Skorokhod, A.V. Pokropivny, Atomistic mechanism of adhesive wear during friction of atomic-sharp tungsten asperity over (114) bcc-iron surface, Materials letters, vol. 31, pp. 49-54, 1997.
    39.T.F.J. Quinn, J.L. Sullivan, D.M. Rowson, Origins and development of oxidational wear at low ambient temperatures, Wear, vol. 94, pp. 175-191, 1984.
    40.T.F.J. Quinn, W.O. Winer, An experimental study of the “hot-spots” occurring during the oxidational wear of tool steel on sapphire, Journal of Tribology, vol. 109, pp. 315-320, 1987.
    41.M. Vardavoulias, The role of hard second phases in the mild oxidational wear mechanism of high-speed steel-based materials, Wear, vol. 173, pp. 105-114, 1994.
    42.T.F.J. Quinn, Computional methods applied to oxidational wear, Wear, vol. 199, pp. 169-180, 1996.
    43.T.F.J. Quinn, Oxidational wear modeling part Ⅲ. The effects of speed and elevated temperatures, Wear, vol. 216, pp. 262-275, 1998.
    44.T.F.J. Quinn, The oxidational wear of low alloy steels, Tribology International, vol. 35, pp. 694-715, 2002.
    45.H. So, The mechanism of oxidational wear, Wear, vol.184, pp. 161-167, 1995.
    46.N. P. Suh, "The Delamination Theory of wear", Wear, vol.25, pp.111-124, 1973.
    47.Bhushan, Bharat, Handbook of Tribology, McGraw-Hill, USA, 1991.
    48.C.M. Talor, "Engine Tribology", Tribology Series, 26, 1993.
    49.H. Hertz, "Uber die beruhrung Fester Elastischer Korper, (On the Contact of elastic Solids)", J. Reine and Angewandte Mathe Matik, Vol. 92, pp. 1156-171, 1881.
    50.B. J. Hamrock and D. Dowson, "Ball Bearing Lubrication the Elastohydrodynamics of Elliptical Contacts", John Willey & Sons, 1981.
    51.H. Hertz, Miscellaneous Papers by H. Hertz, Jones & Schott (eds), Macmillan, London, 1986.
    52.J. A. Williams, Engineering Tribology, Appendix 5, 1994.
    53.Y.C. Lin , Y.H. Cho, "Elucidating the microstructural and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicomponent alloy clad layers synthesized in situ", Surface & Coatings Technology, Vol. 203, pp. 1694-1701, 2009.
    54.李明奇,製程參數對中碳鋼表面被覆SiC粉末耐磨耗性能之影響,國立台灣科技大學碩士論文,1998。
    55.Kalpakjian, and Schmid , Manufacturing Engineering and Technology, 6E, PEARSON, 2010.
    56.黃振賢,金屬熱處理,新文京開發出版有限公司,第18版,2004。

    無法下載圖示 全文公開日期 2016/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE