簡易檢索 / 詳目顯示

研究生: 黃庭毅
Ting-Yi Huang
論文名稱: 水相CuInZnS/ZnS量子點製備暨奈米複合材料的合成與生醫影像/光熱/光動力之應用
Aquenous synthesis of CuInZnS/ZnS quantum dots and The synthesis of nanocomposite for bioimaging/photothermal/photodynamic application
指導教授: 何郡軒
Jinn-Hsuan Ho
口試委員: 張家耀
Jia-Yaw Chang
黃志清
Chih-Ching Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 100
中文關鍵詞: 奈米複合物光熱/光動力治療螢光影像生物相容性
外文關鍵詞: nanocomposite, photothermal/photodynamic therapy, fluorescent imaging, cytotoxicity
相關次數: 點閱:480下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要以合成螢光CuInZnS/ZnS量子點以及量子點結合具有光熱/光動力效果的異質結構奈米晶體材料,在材料的分析和應用上分成兩部分說明

第一部份: 針對螢光CuInZnS/ZnS量子點提出一個簡單且快速的製備方式。藉由水熱合成法並搭配雙穩定劑可直接合成出高螢光量子產率的水溶性量子點。 後續利用交聯反應對量子點表面嫁接苯硼酸分子,研究發現苯硼酸分子可以專一性地對Hela子宮頸癌細胞呈現螢光影像。另外,Hela子宮頸癌細胞和斑馬魚的毒性測試皆指出CuInZnS/ZnS量子點為低毒性奈米材料,期待後續可作為醫學上的應用。

第二部份: 本實驗發展出以牛血清蛋白將有機相的Cu2S/CIS異質結構晶體進行相轉換到水溶液相,同時包覆在Cu2S/CIS表面的牛血清蛋白又能螯合Au螢光團簇形成新型態的奈米複合物。利用Cu2S/CIS異質結構光熱(photothermal)的性能搭配Au團簇之螢光和光動力(photodynamic)性能,使得本材料兼具光熱/光動力治療以及細胞標靶螢光影像等多功能性的奈米材料。


In the frist part of this study, dual-stabilizer-capped CuInZnS/ZnS (CIZS/ZnS) quantum dots (QDs) in aqueous media via hydrothermal routes were synthesized. The surface of CIZS/ZnS QDs effectively coated with dual stabilizer, resulting higher quantum yield and carboxylic groups that conjugate with various materals. The dual-stabilizer-capped CIZS/ZnS QDs were conjugated with 3-aminophenylboronic acid (APBA), termed CIZS/ZnS@APBA, for Hela tumor cell labeling. In vitro and in vivo assessments, using Hela cells and zebrafish embryos respectively, revealed that CIZS/ZnS@APBA nanoprobes exhibit low cytotoxicity. Confocal scanning laser imaging demonstrated that nanoprobes can be efficiently internalized and are localized in the cytoplasm of Hela cells. Analysis of ruslts reveals that potential use of CIZS/ZnS@APBA as a safe and effective targeted probe for in vivo imaging of cancer.
The second part is the preparation multifunctional Au-Cu2S/CIS nanocomposite, which could be able to apply in fluorescent imaging and photothermal/photodynamic therapy. The fluorescent imaging and acute toxic response of Au-Cu2S/CIS nanocomposite were checked by using Hela tumor cell. Furthermore, the generation of ROS in Hela tumor cells induced by Au-Cu2S/CIS before and after visible light irradiation were checked. The analysis result reveal that Au-Cu2S/CIS nanocomposite show photothermal and photodynamic effect and fluorescent imaging probes for specific cancer diagnosis.

摘要 Abstract 致謝 總目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 研究動機 第二章 理論基礎與文獻回顧 2.1 奈米材料之基本特性 2.1.1 小尺寸效應 (Size Effect) 2.1.2 量子尺寸效應 (The Quantum Size Effect) 2.1.3 表面效應 (Surface Effect) 2.1.4 宏觀量子穿隧效應 (Quantum Tunneling) 2.1.5 奈米材料之能隙與量子侷限效應 2.2 奈米晶體的合成方法 2.3 異質結構奈米晶體(Heteronanostructures) 2.3.1 異質結構奈米晶體介紹 2.3.2 異質結構奈米晶體生長機制 2.4 奈米材料表面改質及功能化 2.5 光熱治療與光動力治療發展與介紹 2.5.1 光熱治療概況 2.5.2 奈米材料在光熱治療的介紹 2.5.3 光動力治療概況 2.5.4 奈米材料在光動力治療的介紹 第三章 實驗方法 3.1 實驗藥品 3.2 實驗量測儀器 3.3 實驗步驟 3.3.1 CIZS/ZnS 水相量子點合成 3.3.2 製備CIZS/ZnS水相量子點偶聯APBA 3.3.3 Cu2S奈米晶體與Cu2S/CIS奈米棒合成 3.3.4 Cu2S/CIS奈米棒與BSA之表面改質 3.3.5 Cu2S/CIS水溶性溶液合成Au螢光奈米團簇 第四章 實驗結果與討論 4.1 CIZS/ZnS水相量子點之製備與鑑定 4.1.1 CIZS/ZnS水相量子點合成實驗介紹 4.1.2 CIZS/ZnS水相量子點材料分析鑑定 4.2 CIZS/ZnS水相量子點之毒性檢測 4.3 CIZS/ZnS水相量子點之生物影像顯影應用 4.4 Au(NCs)-Cu2S/CIS之製備與鑑定 4.4.1 Au(NCs)-Cu2S/CIS合成與表面改質實驗介紹 4.4.2 Cu2S/CIS和Cu2S異質結構材料鑑定及光熱分析 4.4.3 Au(NCs)-Cu2S/CIS螢光異質結構材料鑑定及光熱分析 4.5 Au(NCs)-Cu2S/CIS之毒性檢測及光熱治療分析 4.5.1 Au(NCs)-Cu2S/CIS之毒性檢測 4.5.2 Au(NCs)-Cu2S/CIS之光熱治療分析 4.6 Au(NCs)-Cu2S/CIS之生物影像顯影的應用 4.7 Au(NCs)-Cu2S/CIS之光動力檢測分析 第五章 結論 參考文獻

[1] 馬振基編撰 (2003),奈米材料科技原理與應用,全華科技圖書股份有限公司,台灣
[2] 張立德等編 (2002),奈米材料和奈米結構,鼎隆圖書股份有限公司,台灣
[3] 馬振基編撰 (2005),奈米材料科技原理與應用,全華科技圖書股份有限公司,台灣 (ISBN:957-21-4309-3)
[4] 劉吉平、郝向陽 (2002),奈米科學與技術,世茂出版社。台灣 (ISBN:957-776-572-6)
[5] Reimann, S. M.; Manninen, M. Reviews of Modern Physics, 2002, 74(4), 1283.
[6] Bawendi, M. C.; Steigerwald, M. L.; Brus, L. E. Annual Review of Physical Chemistry, 1990, 41, 477.
[7] 張安華編撰 (2005),實用奈米技術,新文京開發出版股份有限公司,台灣
[8] A. P.Alivisatos, The Journal of Physical Chemistry, 1996, 100, 13226-13239.
[9] E. Roduner, Chemical Society reviews, 2006, 35, 583-592.
[10] 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程、吳育民,奈米科技導論(ISBN:978-957-21-6428-0),全華科技圖書股份有限公司,台灣。
[11] Masayuki Fujita. 2013. Silicon Photonics: Nanocavity Brightness Silicon. Nature Photonics, 7, pages 264-265.
[12] A. P. Alivisatos, Science, New Series, 271, No. 5251. (Feb. 16, 1996), pp. 933-937.
[13] E. Roduner, Chemical Society reviews, 2006, 35, 583-592.
[14] J. V. Williams, N. A. Kotov and P. E. Savage, Ind. Eng. Chem. Res., 2009, 48, 4316.
[15] R. Xie, D. Battaglia and X. Peng, J. Am. Chem. Soc., 2007, 129, 15432.
[16] D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang and Y. Lu, J. Am. Chem. Soc., 2008, 130, 5620.
[17] X. Lu, Z. Zhuang, Q. Peng and Y. Li, Chem. Commun., 2011, 47, 3141.
[18] De Mello Donega, C.; Liljeroth, P.; Vanmaekelbergh, D.A.M. (2005) Small: nano micro, 1, pp. 1152 - 1162 (Article)
[19] D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang and Y. Lu, J. Am. Chem. Soc., 2008, 130, 5620.
[20] R. Xie, M. Rutherford and X. Peng, J. Am. Chem. Soc., 2009, 131, 5691.
[21] M. Kruszynska, H. Borchert, J. r. Parisi and J. Kolny-Olesiak, J. Am. Chem. Soc., 2010, 132, 15976.
[22] S.-H. Choi, E.-G. Kim and T. Hyeon, J. Am. Chem. Soc., 2006, 128, 2520.
[23] H. Zhong, S. S. Lo, T. Mirkovic, Y. Li, Y. Ding, Y. Li and G. D. Scholes, ACS Nano, 2010, 4, 5253.
[24] M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura and H. Maeda, J. Chem. Phys., 2008, 129, 134709.
[25] W. Du, X. Qian, J. Yin and Q. Gong, Chem. Eur. J., 2007, 13, 8840.
[26] Y. Jiang, Y. Wu, X. Mo, W. Yu, Y. Xie and Y. Qian, Inorg. Chem., 2000, 39, 2964.
[27] J. Xiao, Y. Xie, Y. Xiong, R. Tang and Y. Qian, J. Mater. Chem., 2001, 11, 1417.
[28] L. Ren, F. Yang, Y.-R. Deng, N.-N. Yan, S. Huang, D. Lei, Q. Sun and Y. Yu, Int. J. Hydrogen. Energ., 2010, 35, 3297.
[29] S. Liu, H. Zhang, Y. Qiao and X. Su, RSC Advances, 2012, 2, 819.
[30] M. Baghbanzadeh, L. Carbone, P. D. Cozzoli and C. O. Kappe, Angew. Chem. Int. Ed., 2011, 50, 11312.
[31] Y. Li, L. Jing, R. Qiao and M. Gao, Chem. Commun., 2011, 47, 9293.
[32] Wei-Wei Xiong, Guo-Hai Yang, Xing-Cai Wu, and Jun-Jie Zhu, ACS Appl. Mater. Interfaces, 2013
[33] X. G. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos, J. Am. Chem. Soc., 1997, 119, 7019.
[34] Yu, S. S. Chang, C.L. Lee and C. R. C. Wang, J. Phys. Chem. B, 1997, 101, 6661.
[35] N. Cordente, M. Respaud, F. Senocq, M.-J. Casanove, C. Amiens and B. Chaudret, Nano Lett., 2001, 1, 565.
[36] V. F. Puntes, D. Zanchet, C. K. Erdonmez and A. P. Alivisatos, J. Am. Chem. Soc., 2002, 124, 12874.
[37] S. Chen, Z. Fan and D. L. Carroll, J. Phys. Chem. B, 2002, 106, 10777.
[38] H. Yu, J. Li, R. A. Loomis, P. C. Gibbons, Wang and W. E. Buhro, J. Am. Chem. Soc., 2003, 125, 16168.
[39] J. W. Grebinski, K. L. Hull, J. Zhang, T. H. Kosel and M. Kuno, Chem. Mater., 2004, 16, 5260.
[40] X. Zhong, R. Xie, L. Sun, I. Lieberwirth and W. Knoll, J. Phys. Chem. B, 2005, 136 110, 2.
[41] D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang and A. P. Alivisatos, Nature, 2004, 430, 190.
[42] S. M. Lee, Y. w. Jun, S. N. Cho and J. Cheon, J. Am. Chem. Soc., 2002, 124, 11244.
[43] N. Zhao and L. M. Qi, Adv. Mater., 2006, 18, 359.
[44] L. Zheng, Y. Xu, Y. Song, C. Wu, M. Zhang and Y. Xie, Inorg. Chem., 2009, 48, 4003.
[45] V. Schmidt, J. V. Wittemann and U. Gösele, Chem. Rev., 2010, 110, 361.
[46] L. E. Euliss, J. A. DuPont, S. Gratton and J. DeSimone, Chem. Soc. Rev., 2006, 35, 1095.
[47] P. D. Cozzoli, T. Pellegrino and L. Manna, Chem. Soc. Rev., 2006, 35, 1195.
[48] P. D. Cozzoli, T. Pellegrino and L. Manna, Chem. Soc. Rev., 2006, 35, 1195.
[49] J. Chun and J. Lee, Eur. J. Inorg. Chem., 2010, 10, 4251.
[50] A. Huczko, Appl. Phys. A: Mater. Sci. Process., 2000, 70, 365.
[51] Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. AdV. Mater. 2003, 15, 353– 389.
[52] Y. W. Jun, J. H. Lee, J. S. Choi, J. Cheon, J. Phys. Chem. B, 2005, 109, 14795.
[53] P. Zhu, J. Zhang, Z. Wu and Z. Zhang, Cryst. Growth Des., 2008, 8, 3148.
[54] J. Wang and C. Zeng, Cryst. Growth, 2004, 270, 729.
[55] J. Wang, Q. W. Chen, C. Zeng and B. Y. Hou, Adv. Mater., 2004, 162, 137.
[56] S. E. Skrabalak and Y. Xia, Nano, 2009, 3, 10-15.
[57] H. Yu, P. C. Gibbons, K. F. Kelton and W. E. Buhro, J. Am. Chem. Soc., 2001, 123, 9198.
[58] D. Seo, C. I. Yoo, J.Jung, H. Song, J. Am. Chem.Soc., 2008, 130, 29401.
[59] Y. Xia, Y. Xiong, B. Lim and S. E. Skrabalak, Angew. Chem. Int. Ed., 2009, 48, 60.
[60] G. Gollavelli and Y. C. Ling, Biomaterials, 2014, 35, 4499– 4507.
[61] X. H. Huang, P. K. Jain, I. H. El-Sayed and M. El-Sayed, Laser Med. Sci., 2008, 23, 217–228 and refs. cited therein.
[62] E. S. Shibu, M. Hamada, N. Murase and V. Biju, J. Photochem. Photobiol., C, 2013, 15, 53–72.
[63] J. Kim, J. Kim, C. Jeong and W. J. Kim, Adv. Drug Delivery Rev., 2016, 98, 99–112.
[64] W. Li, P. Rong, K. Yang, P. Huang, K. Sun and X. Chen, Biomaterials, 2015, 45, 18–26
[65] Breasted JH (1930) The Edwin Smith surgical papyrus, vol 1. University of Chicago.
[66] Svaasand LO, Gomer CJ, Morinelli E (1990) On the physical rationale of laser induced hyperthermia. Lasers Med Sci 5:121–128.
[67] Gould RG (1959) The LASER, light amplification by stimulated emission of radiation. The Ann Arbor Conference on Optical Pumping.
[68] Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187:493–494.
[69] Kapany NS, Peppers NA, Zweng HC, Flocks M (1963) Retinal photocoagulation by Lasers. Nature 199:146–149.
[70] Minton JP, Carlton DM, Dearman JR, McKnight WB, Ketcham AS (1965) An evaluation of the physical response of malignant tumor implants to pulsed laser radiation. Surg Gynaecol Obstet 121:538–544.
[71] Yang J, Choi J, Bang D, Kim E, Lim E-K, Park H, et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew Chem Int Ed 2011;50:441-4.
[72] Kim J-W, Galanzha EI, Shashkov EV, Moon H-M, Zharov VP. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol 2009;4:688-94.
[73] Moon HK, Lee SH, Choi HC. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 2009;3:3707-31.
[74] Wang X, Wang C, Cheng L, Lee S-T, Liu Z. Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J Am Chem Soc 2012;134:7414-22.
[75] K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, Z. Liu Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy Nano Lett, 10 (2010), pp. 3318–3323.
[76] J.T. Robinson, S.M. Tabakman, Y. Liang, H. Wang, H. Sanchez Casalongue, D. Vinh, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy J Am Chem Soc, 133 (2011), pp. 6825–6831.
[77] Z.M. Markovic, L.M. Harhaji-Trajkovic, B.M. Todorovic-Markovic, D.P. Kepić, K.M. Arsikin, S.P. Jovanović, et al. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes Biomaterials, 32 (2011), pp. 1121–1129.
[78] K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, et al. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles Adv Mater, 24 (2012), pp. 1868–1872.
[79] M. Li, X. Yang, J. Ren, K. Qu, X. Qu Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer's disease Adv Mater, 24 (2012), pp. 1722–1728.
[80] S.H. Hu, Y.W. Chen, W.T. Hung, I.W. Chen, S.Y. Chen Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ Adv Mater, 24 (2012), pp. 1748–1754.
[81] Y. Li, W. Lu, Q. Huang, C. Li, W. Chen Copper sulfide nanoparticles for photothermal ablation of tumor cells Nanomed, 5 (2010), pp. 1161–1171.
[82] M. Zhou, R. Zhang, M. Huang, W. Lu, S. Song, M.P. Melancon, et al. A chelator-free multifunctional [64Cu] CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy J Am Chem Soc, 132 (2010), pp. 15351–15358.
[83] S.B. Lakshmanan, X. Zou, M. Hossu, L. Ma, C. Yang, W. Chen Local field enhanced Au/CuS nanocomposites as efficient photothermal transducer agents for cancer treatment J Biomed Nanotechnol, 8 (2012), pp. 883–890.
[84] Q. Tian, M. Tang, Y. Sun, R. Zou, Z. Chen, M. Zhu, et al. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells Adv Mater, 23 (2011), pp. 3542–3547.
[85] Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, et al. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo ACS Nano, 5 (2011), pp. 9761–9771.
[86] X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, J. Am. Chem. Soc. 128 (2006 ) 2115.
[87] E.B. Dickerson, E.C. Dreaden, X. Huang, I.V. El-Sayed, H. Chu, S. Pushpanketh,J.F. McDonald, M.A. El-Sayed, Cancer Lett. 269 (2008) 57.
[88] R. Guo, L. Zhang, H. Qian, R. Li, X. Jiang, B. Liu, Langmuir 26 (2010) 5428.
[89] Y.-F. Huang, K. Sefah, S. Bamrungsap, H.-T. Chang, W. Tang, Langmuir 24 (2008) 11860.
[90] F. Zhou, S. Wu, W.R. Chen, D. Xing, Small 7 (2011) 2727.
[91] K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, Z. Liu, Nano Lett. 10 (2010) 3318.
[92] Wang, S.; Riedinger, A.; Li, H.; Fu, C.; Liu, H.; Li, L.; Liu, T.; Tan, L.; Barthel, M. J.; Pugliese, G.; De Donato, F.; D’Abbusco, M. S.; Meng, X.; Manna, L.; Meng, H.; Pellegrino, T. ACS Nano 2015, 9, 1788−1800.
[93] Raab O (1900) The effect of fluorescent substances on infusoria. Z Biol 39:524–526.
[94] Jesionek A, Tappeiner VH (1903) Therapeutische Versuche mit fluoreszierenden Stoffen. Muench Med Wochneshr 47:2042–2044.
[95] Dougherty TJ (1996) A brief history of clinical photodynamic therapy development at Roswell Park cancer institute. J Clin Laser Med 14:219–221.
[96] Stilts CE, Nelen MI, Hilmey DG, Davies SR, Gollnick SO, Oseroff AR, Gibson SL, Hilf R, Detty MR (2000) Water-soluble, coremodified porphyrins as novel, longer-wavelength-absorbing sensitizers for photodynamic therapy. Med Chem 43(12):2403–2410.
[97] Spikes JD (1990) New trends in photobiology (invited review). Chlorins as photosensitizers in biology and medicine. J Photochem Photobiol B Biol:259–274.
[98] Rosenthal I (1990) Phthalocyanines as photodynamic sensitizers. Photochem Photobiol 51:351–356.
[99] Bonnett R (1995) porphyrin and phthalocyanine photosensitizers for photodynamic therapy. Chem Soc Rev 24:19–33.
[100] Lin CP, Kelly MW, Sibayan SAB, Latina MA, Anderson RR (1999) Selective cell killing by microparticle absorption of pulsed laser radiation. IEEE J Quantum Electron 5:963–968.
[101] Liao H, Hafner JH (2005) Gold nanorod bioconjugates. Chem Mater 17:4636–4641.
[102] Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of precancer using anti–epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:1999–2004.
[103] B. Jang, J.-Y. Park, C.-H. Tung, I.-H. Kim, Y. Choi, ACS Nano 5 (2011) 1086.
[104] A. M. Derfus, W. C. W. Chan and S. N. Bhatia, Nano Lett., 2004, 4, 11.
[105] J. Xie, Y. Zheng and J. Y. Ying, J. Am. Chem. Soc., 2009, 131, 888–889.
[106] X. Tang, W. Cheng, E. S. G. Choo, Xue, Chem. Commun., 2011, 47, 5217.
[107] Wang, S.; Riedinger, A.; Li, H.; Fu, C.; Liu, H.; Li, L.; Liu, T.; Tan, L.; Barthel, M.J.; Pugliese, G.; DeDonato,F.; D’Abbusco, M.S.; Meng, X.; Manna, L.; Meng, H.; Pellegrino, T. ACS Nano 2015, 9, 1788– 1800.
[108] Z. Liu, X. Liu, Y. Du, J. Ren and X. Qu, ACS Nano, 2015, 9, 10335–10346.
[109] M.Zhou, S.L.Song, J.Zhao, M.Tian and C.Li, J.Mater. Chem. B, 2015, 3, 8939–8948.
[110] T.L Cheung, L.Hong, N.Rao, C.B.Yang, L.Wang, W.J.Lai, P.H.J.Chong, W.C.Law, K.T.Yong, Nanoscale, 2016,8, 6609-6622.
[111] Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang and J. Hu, ACS Nano, 2011, 5, 9761-9771
[112] Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G.; Koo, B.; Tunnell, J. W.; Korgel, B. A. Copper Selenide Nanocrystals for Photothermal Therapy. Nano Lett. 2011, 11, 2560–2566.
[113] Zhou, M.; Zhang, R.; Huang, M. A.; Lu, W.; Song, S. L.; Melancon, M. P.; Tian, M.; Liang, D.; Li, C. A Chelator-Free Multifunctional [64Cu]-CuS Nanoparticle Platform for Simultaneous Micro-Pet/Ct Imaging and Photothermal Ablation Therapy. J. Am. Chem. Soc. 2010, 132, 15351–15358.

無法下載圖示 全文公開日期 2021/08/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE