簡易檢索 / 詳目顯示

研究生: 林皇佑
LIN HUANG YU
論文名稱: 水溶性多精胺酸聚天門冬胺酸-阿黴素接枝物對黑色素腫瘤細胞毒性之探討
Assessment of the cytotoxicity of soluble (multi-L-arginyl-poly-L-aspartate)-doxorubincin conjugate on melanoma cells
指導教授: 曾文祺
Wen-Chi Tseng
口試委員: 唐建翔
tang chien hsiang
陳耀騰
Yaw-Terng Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 97
中文關鍵詞: 多精胺酸聚天門冬胺酸阿黴素
外文關鍵詞: multi-L-arginyl-poly-L-aspartate, MAPA, doxorubicin
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 經由基因重組大腸桿菌所生產的多精胺酸聚天門冬胺酸(multi-L-arginyl-poly-L-aspartate, MAPA),也被稱為藍藻蛋白(cyanophycin granule polypeptide, CGP),主鏈為天門冬胺酸 (aspartic acid, Asp),側鏈為精胺酸(arginine, Arg)和離胺酸(lysine, Lys)所組成的,是一種非核糖體合成的天然蛋白質,具有好的生物相容性、酸鹼應答、高臨界溶解溫度(upper critical solution temperature, UCST)溫敏性的智能高分子。
    本研究利用Traut's reagent對水溶性藍藻蛋白巰基(thiol group)加成反應,再利用succinimidyl 3-(2-pyridyldithio)propionate (SPDP)與抗癌藥物阿黴素(doxorubicin)反應,將sMAPA-SH、py-ss-Dox以不同比例的反應合成,命名為sMAPA-SS-Dox,並以傅立葉變換紅外光譜(Fourier-transform infrared spectroscopy, FTIR)鑑定官能基和核磁共振光譜法(Nuclear Magnetic Resonance spectroscopy, NMR)確定分子結構。
    隨後以動態光散射粒徑分析(Dynamic Light Scattering, DLS)和穿透式電子顯微鏡(Transmission electron microscope, TEM)確定粒徑大小與形狀。在不同濃度下測試不同接枝率的sMAPA-SS-Dox和Dox對黑色素腫瘤細胞的毒殺能力,以MTT法測試其相對存活率。


    Multi-L-arginyl-poly-L-aspartate (MAPA), also known as cyanophycin granule polypeptide (CGP), simply cyanophycin, is prepared with the recombinant Escherichia coli. It consists of an aspartic acid (Asp) backbone with arginine (Arg) and lysine (Lys) as side chains. It is a non-ribosomal polypeptide that has been shown to possess good biocompatibility, acid-base response, and upper critical solution temperature (UCST) temperature type response.
    In this study, sulfhydryl groups were introduced to the soluble cyanophycin using Traut’s reagent to obtain sMAPA-SH. The anticancer drug, Doxorubicin, was modified using SPDP (succinimidyl 3-(2-pyridyldithio) propionate) acquiring Py-SS-Dox. A conjugated product, named sMAPA-SS-Dox, was prepared by combining two modified compounds in different proportions, and the molecular structure is determined through Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR).
    Subsequently, the particle size distribution and shape of the obtained product was determined using Dynamic Light Scattering (DLS) and transmission electron microscope (TEM). The toxicity of the particles prepared in different proportions to Melanoma Tumor cells was determined at different concentrations, and the cellular viability was determined through MTT assay.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 第二章 文獻回顧 2 2.1 多精胺酸聚天門冬胺酸 2 2.1.1以基因重組方式生產多精胺酸聚天門冬胺酸與純化 3 2.1.2多精胺酸聚天門冬胺酸之應用 4 2.2 阿黴素(Doxorubicin) 5 2.2.1 阿黴素(Doxorubicin)的簡介 5 2.2.2 阿黴素(Doxorubicin)的生產 6 2.2.3 阿黴素(Doxorubicin)的應用 6 2.3智能高分子(smart polymer) 7 2.3.1溫度敏感性高分子 8 2.3.2氧化還原敏感性高分子 10 第三章 實驗材料與方法 14 3.1 實驗藥品 14 3.2 實驗儀器 16 3.3 藥品與溶液配置 17 3.3.1菌株培養 17 3.3.2 SDS-PAGE 19 3.3.4 蛋白硫醇化反應溶液 20 3.3.5 EDTA Stock solution 21 3.3.6 DTNB (5,5'-dithiobis-(2-nitrobenzoic acid)) assay 21 3.3.7溶解度與溫度穩定性之溶劑 21 3.3.8 TEM染劑 22 3.3.9細胞培養 22 3.3.10藥物釋放 24 3.4 實驗步驟 24 3.4.1 菌株培養 24 3.4.2純化藍藻蛋白 25 3.4.3 SDS-PAGE 26 3.4.4水溶性藍藻蛋白硫醇基加成反應 27 3.4.5合成與純化含雙硫鍵之阿黴素 30 3.4.6合成sMAPA-SS-Dox 31 3.4.7 sMAPA-SS-Dox之UV-Vis圖譜分析 32 3.4.8 sMAPA-SS-Dox藥物粒徑分析 33 3.4.9動物細胞 34 第四章 結果與討論 40 4.1硫醇化水溶性藍藻蛋白 40 4.1.1硫醇化水溶性藍藻蛋白之FTIR分析 40 4.1.2 硫醇化水溶性藍藻蛋白之NMR分析 42 4.1.3 硫醇化水溶性藍藻蛋白硫醇化比例計算 44 4.2 含雙硫鍵之阿黴素 45 4.2.1 含雙硫鍵之阿黴素之FTIR分析 45 4.2.2 含雙硫鍵之阿黴素之NMR分析 47 4.3 硫醇化藍藻蛋白接枝含雙硫鍵阿黴素 49 4.3.1 sMAPA-SS-Dox之UV-Vis圖譜分析 49 4.3.2 sMAPA-SS-Dox接枝率量測 49 4.3.3 sMAPA-SS-Dox之NMR分析 52 4.4 sMAPA-SS-Dox粒徑分析 54 4.4.1 動態光散射粒徑分析 54 4.4.2 穿透式電子顯微鏡 55 4.4.3 sMAPA-SS-Dox於4 ℃ PBS之穩定性量測 59 4.5 藥物釋放 61 4.5.1 體外細胞實驗 61 4.5.2共軛焦顯微鏡(confocal microscopy) 66 4.5.3穀胱甘肽(glutathione, GSH)還原雙硫鍵 70 結論 72 附錄 73 附錄一 HPLC分析水溶性藍藻蛋白組成比例 73 附錄二 SDS-PAGE分析水溶性/非水溶性藍藻蛋白分子量 74 附錄四 sMAPA-SS-Dox0.11 DLS 粒徑分布圖 75 附錄五 sMAPA-SS-Dox0.32 DLS 粒徑分布圖 76 附錄六 sMAPA-SS-Dox0.40 DLS 粒徑分布圖 77 附錄七 sMAPA-SS-Dox0.63 DLS 粒徑分布圖 78 參考文獻 79

    1. Mackerras, A.H., N.M. de Chazal, and G.D. Smith, Transient accumulations of cyanophycin in Anabaena cylindrica and Synechocystis 6308.
    Journal of General Microbiology, 1990, 136, p.2057-2065
    2. Simon, R.D., Cyanophycin granules from the blue-green alga Anabaena cylindrica: a reserve material consisting of copolymers of aspartic acid and arginine.
    Proceedings of the National Academy of Sciences, 1971. 68(2): p. 265-267.
    3. Ziegler, K., Diener, A., Herpin, C., Richter, R., Deutzmann, R., and Lockau, W., Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi‐L‐arginyl‐poly‐ L‐aspartate (cyanophycin).
    European Journal of Biochemistry, 1998. 254(1): p.154-159
    4. Voss, I., Diniz, S. C., Aboulmagd, E., & Steinbüchel, A. (2004). Identification of the Anabaena sp. Strain PCC7120 Cyanophycin Synthetase as Suitable Enzyme for Production of Cyanophycin in Gram-Negative Bacteria Like Pseudomonas p Utida and Ralstonia e Utropha.
    Biomacromolecules, 5(4), p.1588-1595.
    5. Ziegler, K., Diener, A., Herpin, C., Richter, R., Deutzmann, R., & Lockau, W, Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi‐L‐arginyl‐poly‐L‐aspartate (cyanophycin).
    European Journal of Biochemistry, 1998. 254(1): p.154-159.
    6. Aboulmagd, E., Oppermann-Sanio, F. B., & Steinbüchel, A., Molecular characterization of the cyanophycin synthetase from Synechocystis sp. strain PCC6308.
    Archives of Microbiology, 2000. 174(5): p.297-306.
    7. Berg, H., Ziegler, K., Piotukh, K., Baier, K., Lockau, W., and Volkmer‐Engert, R., Biosynthesis of the cyanobacterial reserve polymer multi‐L‐arginyl‐poly‐L‐aspartic acid (cyanophycin) Mechanism of the cyanophycin synthetase reaction studied with synthetic primers. European Journal of Biochemistry, 2000. 267(17):p.5561-5570.
    8. 17. Hai, T., Oppermann-Sanio, F.B., and Steinbüchel, A., Purification and characterization of cyanophycin and cyanophycin synthetase from the thermophilic Synechococcus sp. MA19.
    FEMS Microbiology Letters, 1999. 181(2): p.229-236.
    9. Kroll, J., Klinter, S., & Steinbüchel, A., A novel plasmid addiction system for large-scale production of cyanophycin in Escherichia coli using mineral salts medium.
    Applied Microbiology and Biotechnology, 2011. 89(3): p. 593-604.
    10. Tseng, W. C., Fang, T. Y., Cho, C. Y., Chen, P. S., & Tsai, C. S., Assessments of growth conditions on the production of cyanophycin by recombinant Escherichia coli strains expressing cyanophycin synthetase gene. Biotechnology Progress, 2012. 28(2): p. 358-363.
    11. Tseng, W. C., Fang, T. Y., Hsieh, Y. C., Chen, C. Y., & Li, M. C., Solubility and thermal response of fractionated cyanophycin prepared with recombinant Escherichia coli.
    Journal of Biotechnology, 2017. 249: p.59-65.
    12. Lang, N. J., Simon, R. D., & Wolk, C. P., Correspondence of cyanophycin granules with structured granules in Anabaena cylindrica.
    Archives of Microbiology, 1972. 83(4): p.313-320.
    13. Kroll, J., Klinter, S., & Steinbüchel, A., A novel plasmid addiction system for large-scale production of cyanophycin in Escherichia coli using mineral salts medium.
    Applied Microbiology and Biotechnology, 2011. 89(3): p.593-604.
    14. Berg, H., Ziegler, K., Piotukh, K., Baier, K., Lockau, W., & Volkmer‐Engert, R., Biosynthesis of the cyanobacterial reserve polymer multi‐L‐arginyl‐poly‐L‐aspartic acid (cyanophycin) Mechanism of the cyanophycin synthetase reaction studied with synthetic primers.
    European Journal of Biochemistry, 2000. 267(17): p.5561-5570.
    15. Solaiman, D. K., Garcia, R. A., Ashby, R. D., Piazza, G. J., & Steinbüchel, A. (2011). Rendered-protein hydrolysates for microbial synthesis of cyanophycin biopolymer.
    New biotechnology, 28(6), p.552-558.
    16. Park, S. E., Shamloo, K., Kristedja, T. A., Darwish, S., Bisoffi, M., Parang, K., & Tiwari, R. K. (2019). EDB-FN Targeted Peptide–Drug Conjugates for Use against Prostate Cancer.
    International journal of molecular sciences, 20(13), p.3291.
    17. Weiss, R. B. (1992, December). The anthracyclines: will we ever find a better doxorubicin? In Seminars in oncology (Vol. 19, No. 6, p.670-686).
    18. Yeo W, Lam KC, Zee B; Hepatitis B reactivation in patients with hepatocellular carcinoma undergoing systemic chemotherapy.
    Ann Oncol. November 2004, 15 (11): p.1661–6
    19. Malla, S., Niraula, N. P., Singh, B., Liou, K., & Sohng, J. K. (2010). Limitations in doxorubicin production from Streptomyces peucetius.
    20. Thorn, C. F., Oshiro, C., Marsh, S., Hernandez-Boussard, T., McLeod, H., Klein, T. E., & Altman, R. B. (2011). Doxorubicin pathways: pharmacodynamics and adverse effects.
    Pharmacogenetics and genomics, 21(7), p.440.
    21. Malla, S., Niraula, N. P., Liou, K., & Sohng, J. K. (2010). Improvement in doxorubicin productivity by overexpression of regulatory genes in Streptomyces peucetius.
    Research in microbiology, 161(2), p.109-117.
    22. Galaev, I. Y., & Mattiasson, B. (1999). ‘Smart’polymers and what they could do in biotechnology and medicine.
    Trends in biotechnology, 17(8), p.335-340.
    23. Kushida, A., Yamato, M., Konno, C., Kikuchi, A., Sakurai, Y., and Okano, T., Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature‐responsive culture surfaces.
    Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials, 1999. 45(4): p.355-363
    24. Microbiological research, 165(5), p.427-435.
    25. Laskar, P., Somani, S., Altwaijry, N., Mullin, M., Bowering, D., Warzecha, M, C. (2018). Redox-sensitive, cholesterol-bearing PEGylated poly (propylene imine)-based dendrimersomes for drug and gene delivery to cancer cells.
    Nanoscale, 10(48), p.22830-22847.
    26. Tebaldi, M. L., Oda, C. M., Monteiro, L. O., de Barros, A. L., Santos, C. J., & Soares, D. C. F. (2018). Biomedical nanoparticle carriers with combined thermal and magnetic response: Current preclinical investigations.
    Journal of Magnetism and Magnetic Materials, 461, p.116-127.
    27. Bae, Y. C., Lambert, S. M., Soane, D. S., & Prausnitz, J. M. (1991). Cloud-point curves of polymer solutions from thermooptical measurements.
    Macromolecules, 24(15), p.4403-4407.
    28. Joentgen W, Groth T, Steinbuchel A, Hai T, Oppermann FB (1998) Polyaspartic acid homopolymersand copolymers:
    Biotechnical production and use, p.180 (752B1)
    29. Solaiman DK, Rafael Y, Garcia A, Richard D, Ashby, George J Piazza, Steinbuchel A (2011) Rendered-protein hydrolysates for microbial synthesis of cyanophycin biopolymer.
    New Biotechnol 28(6): p.552–558
    30. Hai, T., Oppermann-Sanio, F.B., and Steinbüchel, A., Purification and characterization of cyanophycin and cyanophycin synthetase from the thermophilic Synechococcus sp. MA19.
    FEMS Microbiology Letters, 1999. 181(2): p.229-236.
    31. Kohno, Y., Saita, S., Men, Y., Yuan, J., and Ohno, H., Thermoresponsive polyelectrolytes derived from ionic liquids.
    Polymer Chemistry, 2015. 6(12): p.2163-2178.
    32. Roy, D., Brooks, W. L., & Sumerlin, B. S., New directions in thermoresponsive polymers.
    Chemical Society Reviews, 2013. 42(17): p.7214-7243.
    33. Maji, T., Banerjee, S., Biswas, Y., and Mandal, T.K., Dual-stimuli-responsive l-serine-based zwitterionic UCST-type polymer with tunable thermosensitivity.
    Macromolecules, 2015. 48(14): p.4957-4966.
    34. Seuring, J. and Agarwal, S., Polymers with upper critical solution temperature in aqueous solution.
    Macromolecular Rapid Communications, 2012. 33(22): p.1898-1920.
    35. Song, Q., Chuan, X., Chen, B., He, B., Zhang, H., Dai, W., ... & Zhang, Q. (2016). A smart tumor targeting peptide–drug conjugate, pHLIP-SS-DOX: synthesis and cellular uptake on MCF-7 and MCF-7/Adr cells.
    Drug delivery, 23(5), p.1734-1746.
    36. Chang, S., Wang, Y., Zhang, T., Pu, X., Zong, L., Zhu, H., ... & Feng, B. (2019). Redox-responsive disulfide bond-bridged mPEG-PBLA prodrug micelles for enhanced paclitaxel biosafety and antitumor efficacy.
    Frontiers in oncology, 9, p.823.
    37. Zhang, H., Pei, M., & Liu, P. (2019). Keratin-based drug-protein conjugate with acid-labile and reduction-cleavable linkages in series for tumor intracellular DOX delivery.
    Journal of Industrial and Engineering Chemistry, 80, p.739-748.
    38. Chen, W., Shi, Y., Feng, H., Du, M., Zhang, J. Z., Hu, J., & Yang, D. (2012). Preparation of copolymer paclitaxel covalently linked via a disulfide bond and its application on controlled drug delivery.
    The Journal of Physical Chemistry B, 116(30), p.9231-9237.
    39. Mizutani, H., Tada-Oikawa, S., Hiraku, Y., Kojima, M., & Kawanishi, S. (2005). Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide.
    Life sciences, 76(13), p.1439-1453.
    40. Mobaraki, M., Faraji, A., Zare, M., Dolati, P., Ataei, M., & Manshadi, H. D. (2017). Molecular mechanisms of cardiotoxicity: a review on major side-effect of doxorubicin.
    Indian Journal of Pharmaceutical Sciences, 79(3), p.335-344.
    41. Sasso, L., Suei, S., Domigan, L., Healy, J., Nock, V., Williams, M. A. K., & Gerrard, J. A. (2014). Versatile multi-functionalization of protein nanofibrils for biosensor applications.
    Nanoscale, 6(3), p.1639-1634.
    42. Bertani, G. (2004). Lysogeny at mid-twentieth century: P1, P2, and other experimental systems.
    Journal of bacteriology, 186(3), p.595-600.
    43. Guo, X., Cheng, Y., Zhao, X., Luo, Y., Chen, J., & Yuan, W. E. (2018). Advances in redox-responsive drug delivery systems of tumor microenvironment.
    Journal of Nanobiotechnology, 16(1), p.1-10.

    無法下載圖示 全文公開日期 2026/10/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE