簡易檢索 / 詳目顯示

研究生: 張展源
Chan-Yuan Chang
論文名稱: 應用於車用發電機且具製程校正之時域智慧型溫度感測器
Time-Domain Intelligent Temperature Sensor with Process Calibration Capability for Automobile Power Generator Applications
指導教授: 陳伯奇
Poki Chen
口試委員: 黃育賢
Yuh-Shyan Hwang
陳建中
Jiann-Jong Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 109
中文關鍵詞: 時域智慧型溫度感測器
外文關鍵詞: Time-Domain Intelligent Temperature Sensor
相關次數: 點閱:264下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本團隊長期以時域型智慧型溫度感測器為研究主軸,多年來的成果不僅包含成本低尚且具有功耗小,適合與其他電路進行統整。此架構受到業界廠商青睞,已成功於去年7月技轉給朋程科技股份有限公司,透過產學合作,將此智慧型溫度感測器應用於車用發電機之溫度監控,提升台灣廠商之國際市場競爭力。
本論文提出應用於車用發電機且具製程校正之時域智慧型溫度感測器,可使用低成本的批次校正(Batch Calibration)來取代傳統之逐晶片單點校正(Chip-by-Chip One-Point Calibration),可大幅降低校正時間與量產成本,不僅功耗低,且可抵抗製程變異以及隨機不匹配所產生的誤差。主要感溫架構為差動對環形振盪器,此組環形振盪器可以振盪出與溫度成正比之溫敏脈衝寬度,並可利用製程校正電路對製程變異進行校正,最後再藉由時間至數位轉換器轉換出相對應之數位輸出。電路亦使用多重元件佈局技巧以降低製程上的隨機誤差與系統誤差。
本溫度感測晶片使用UMC 0.25-μm CMOS高壓製程實現,操作電壓為4.5V,操作速度為4.128k S/s,每次轉換功耗為0.22J,晶片核心面積為0.961mm2,解析度為0.84C,感溫範圍達-40~150C,其量測誤差經單點校正可在-0.9~0.95C內,經批次校正可在-1.65~2C內。


The focus of our research is mainly on time-domain intelligent temperature sensors. The development of cost-effective and power efficient CMOS sensors are much desired and suitable to be integrated into chips and systems. Our recent research breakthrough for sensors has been transferred to Actron Technology Corporation for further development to enhance the international competition capability of Taiwanese automobile industry.
This thesis focuses on time-domain intelligent temperature sensor with process calibration for automobile power generators. With batch calibration capability, this sensor is able to get rid of the high cost of chip-by-chip calibration. It not only lowers the power consumption but also reduces the impact caused by process variation to provide a cost-effective solution for mass production. A differential ring oscillator is implemented as the temperature sensing core which generates a thermally sensitive output pulse with a width linearly proportional to the test temperature. Furthermore, a process calibration circuit is utilized to eliminate the inaccuracy caused by process variation. A succeeding time-to-digital converter is utilized for digital output coding. Finally, the systematic mismatch is carefully taken care of by precision layout for critical devices.
The temperature sensors are fabricated in a UMC 0.25-μm CMOS high-voltage process with 4.5V operation voltage. The proposed sensor is able to operate at a high speed of 4.128k samples/sec. Each conversion consumes 0.22J only. The core area is merely 0.961mm2. The resolution is 0.84°C. The inaccuracy is measured to be -0.9~0.95C by one-point calibration and -1.65~2C by batch-calibration over a wide temperature operation range of -40C to 150C.

摘 要 I Abstract II 誌 謝 IV 目 錄 V 圖目錄 VII 表目錄 X 第一章 序論 1 1.1 研究動機 1 1.2 論文架構 3 第二章 溫度感測器 4 2.1傳統溫度感測元件 4 2.2積體式智慧型溫度感測器 8 2.2.1雙載子電晶體型 9 2.2.2四電晶體之溫度感測器 15 2.2.3振盪器型溫度感測器 19 2.2.4次臨界傳導區漏電流延遲線型溫度感測器 24 2.2.5具偏移時間扣抵之延遲線型溫度感測器 27 2.3積體式溫度感測器之優勢及相關參數 31 2.4結論 34 第三章 具製程校正之時域智慧型溫度感測器 35 3.1整體架構介紹 35 3.2製程校正單元 36 3.2.1偏壓電路 37 3.2.2製程校正電路 40 3.3環形振盪器 44 3.4時間至數位轉換器 47 3.4.1非同步計數器(漣波計數器) 48 3.4.2同步計數器 49 3.4.3十位元時間至數位轉換器 50 3.5校正模式 51 3.5.1單點校正 51 3.5.2批次校正 53 3.5.3校正模式結論 54 第四章 佈局考量 55 4.1隨機不匹配誤差 56 4.2系統不匹配誤差 56 4.3多重元件佈局圖 57 4.4其他訊號線佈局考量 58 第五章 設計流程考量與電路模擬 61 5.1設計流程考量 62 5.1.1類比區塊設計(Analog Block Design) 62 5.1.2數位區塊設計(Digital Block Design) 62 5.1.3類比區塊及數位區塊整合考量與劃分 63 5.2電路模擬 64 5.2.1偏壓電路 64 5.2.2環形振盪器 65 5.2.3製程校正電路 67 5.2.4經製程校正後之模擬圖 69 5.2.5 10位元時間至數位轉換器 72 第六章 量測結果 75 6.1晶片佈局內部區塊配置圖與晶片顯微照 75 6.2量測考量 77 6.3量測結果 79 6.3.1單點校正後之量測結果 79 6.3.2批次校正後之量測結果 85 第七章 效能比較與結論 88 7.1效能比較 88 7.2結論及未來展望 90 7.2.1結論 90 7.2.2未來展望 90 參考文獻 91

[1] 盧明智、盧鵬任 編著,感測器應用與線路分析,台北:全華出版公司,2000。
[2] R. Achenbach, M. Feuerstack-Raible, F. Hiller, M. Keller, K. Meier, H. Rudolph, R. Saur-Brosch, “A digitally temperature-compensated crystal oscillator,” IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp. 1502-1506, Oct. 2000.
[3] C. Poirier, R. McGowen, C. Bostak, S. Naffziger, “Power and temperature control on a 90nm Itanium®-family processor,” IEEE International Solid-State Circuits Conference, pp. 304-305, Feb. 2005.
[4] C. Park, H. Chung, Y. S. Lee, J. Kim, J. Lee, M. S. Chae, D. H. Jung, S. H. Choi, S. Y. Seo, T. S. Park, J. H. Shin, J. H. Cho, S. Lee, K. W. Song, K. H. Kim, J. B. Lee, C. Kim, S. I. Cho, “A 512-mb DDR3 SDRAM prototype with CIO minimization and self-calibration techniques,” IEEE Journal of Solid-State Circuits, vol. 41, no. 4, pp. 831-838, Apr. 2006.
[5] C. Park, H. Chung, Y. S. Lee, J. Kim, J. Lee, M. S. Chae, D. H. Jung, S. H. Choi, S. Y. Seo, T. S. Park, J. H. Shin, J. H. Cho, S. Lee, K. Kim, J. B. Lee, C. Kim, S. I. Cho, “A 512Mbit, 1.6Gbps/pin DDR3 SDRAM prototype with C10 minimization and self-calibration techniques,” IEEE Symposium on VLSI Circuits, pp. 370-373, Jun. 2005.
[6] A. Bakker and J. H. Huijsing, High-Accuracy CMOS Smart Temperature Sensors. Boston:Kluwer Academic Publishers, 2000.
[7] G. C. M. Meijer, G. Wang, and F. Fruett, “Temperature sensors and voltage references implemented in CMOS technology,” IEEE Sensors Journal., vol. 1, no. 3, pp. 225–234, Oct. 2001.
[8] A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE Journal of Solid-State Circuits, vol. 31, no. 7, pp. 933-937, Jul. 1996.
[9] M. Tuthill, “A switched-current, switched-capacitor temperature-sensor in 0.6-µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 33, no. 7, pp. 1117-1122, Jul. 1998.
[10] E. Rotem, A. Naveh, et al., “Analysis of Thermal Monitor features of the Intel Pentium M Processor,” Proceedings of TACS-01, ISCA-31, 2004.
[11] P. Chen, C. C. Chen, C. C. Tsai, W. F. Lu, “A Time-to-Digital-Converter-Based CMOS Smart Temperature Sensor,” IEEE Journal of Solid-State Circuits, vol. 40, no. 8, pp. 1642-1648, Aug. 2005.
[12] T. A. Demassa and Z. Ciccone, Digital Integrated Circuits. New York: Wiley, 1996.
[13] K. Kim, H. Lee, S. Jung and C. Kim, “A 366kS/s 400uW 0.0013mm2 Frequency-to-Digital Converter Based CMOS Temperature Sensor Utilizing Multiphase Clock” IEEE Custom Integrated Circuits Conf., pp. 203-206, Sep. 2009.
[14] P. Krummenacher and H. Oguey, “Smart temperature sensor in CMOS technology,” Sensors and Actuators, A21-A23, pp. 636-638, 1990.
[15] A. Bakker, “CMOS smart temperature sensors-an Overview,” Proc. IEEE Sensors, vol. 2, pp. 1423-1427, Jun. 2002.
[16] K. E. Kuijk, “A precision reference voltage source,” IEEE Journal of Solid-State Circuits, vol. 8, no. 3, pp. 222-226, Jun. 1973.
[17] D. Hilbiber, “A New Semiconductor Voltage Standard” ISSCC Dig. of Tech. Paper, pp. 32-33, Feb. 1964
[18] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
[19] R. Widlar, “New developments in IC voltage regulators,” IEEE International Solid-State Circuits Conference, pp. 158-159, Feb. 1970.
[20] S. J. Chang, Advanced analog IC design, EE, NCKU, 2003.
[21] K. Souri, Y. Chae, and K. Makinwa, “A CMOS Temperature Sensor With a Voltage-Calibrated Inaccuracy of 0.15°C (3σ) From -55°C to 125°C” IEEE Journal of Solid-State Circuits, vol. 48, no. 1, pp. 292-301, Jan. 2013.
[22] M. Sasaki, M. Ikeda and K. Asada. “A Temperature sensor with an inaccuracy of -1/+0.8°C using 90-nm 1-V CMOS for online thermal monitoring of VLSI circuits,” IEEE Transaction on Semiconductor Manufacturing. vol. 21, pp. 201 - 208, May. 2008.
[23] I. M. Filanovsky and A. Allam, “Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits,” IEEE Transactions on Circuits and Systems I, vol. 48, no. 7, pp. 876–884, Jul. 2001.
[24] K. Arabi and B. Kaminska, “Built-in temperature sensors for on-line thermal monitoring of microelectronic structures,” IEEE Computer Design: VLSI in Computers and Processors, pp. 462–467, Oct. 1997.
[25] P. Ituero, J. L. Ayala, M. Lopez-Vallejo, “Leakage-based On-Chip Thermal Sensor for CMOS Technology,” IEEE International Symposium on Circuits and Systems, pp. 3327-3330, 2007.
[26] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. Oxford University Press, 2002.
[27] M. K. Law and A. Bermak, “A 405-nW CMOS Temperature Sensor Based on Linear MOS Operation,” IEEE Transactions on Circuits and Systems II, vol. 56, no. 12, pp. 891–895, Dec. 2009.
[28] M. A. P. Pertijs, K. Makinwa and J. H. Huijsing, “A CMOS Smart Temperature Sensor With a 3σ Inaccuracy of 0.1 °C From 55 °C to 125 °C,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2805-2815, Dec. 2005.
[29] A. L. Aita, M. Pertijs, K. Makinwa, J. H. Huijsing, “A CMOS Smart Temperature Sensor with a Batch-Calibrated Inaccuracy of ±0.25°C (3σ) from -70°C to 130°C,” IEEE International Solid-State Circuits Conference, pp. 342-343, Feb. 2009.
[30] F. Sebastiano, L. J. Breems, K. A. A. Makinwa, S. Drago, D. M. W. Leenaerts, B. Nauta, “A 1.2V 10μW NPN-Based Temperature Sensor in 65nm CMOS with an Inaccuracy of ±0.2°C (3σ) from –70°C to 125°C,” IEEE International Solid-State Circuits Conference, pp. 312-313, Feb. 2010.
[31] C. K. Kim, B. S. Kong, C. G. Lee, Y. H. Jun, “ CMOS Temperature Sensor with Ring Oscillator for Mobile DRAM Self-refresh Control,” IEEE International Symposium on Circuits and Systems, pp. 3094-3097, May. 2008.
[32] Y. Ren, C. Wang, H. Hong, “An all CMOS temperature sensor for thermal monitoring of VLSI circuits,” IEEE Circuits and Systems International Conference on Testing and Diagnosis, pp. 1-5, Apr. 2009.
[33] S. Hwang et al., “A 0.008 mm2 500uW 469kS/s Frequency-to-Digital Converter Based CMOS Temperature Sensor With Process Variation Compensation,” IEEE Trans. Circuits Syst. I, Reg. Papers vol. 60, no. 9, pp. 2241–2248, Sept. 2013
[34] I. M. Filanovsky and A. Allam, “Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuit,” IEEE TCAS-I, vol. 48, NO. 7, pp. 876-884, Jul. 2001.
[35] Y. Tsivids, Operation and modeling of the MOS transistor, New York: McGraw-Hill, 1988.
[36] S. Mohamad, F. Tang, A. Amira, A. Bermak, M. Benammar, “A Low Power Oscillator Based Temperature Sensor for RFID Applications,” IEEE 5th Asia Symposiun on Quality Electronic Design.
[37] Y. An, K. Ryu, D. Jung, S. Woo S. Yung, “An Energy Efficient Time-Domain Temperature Sensor for Low-Power On-Chip Thermal Management,” IEEE SENSORS JOURNAL, vol. 14, NO. 1, Jan. 2014.
[38] R. Nutt, “Digital Time Intervalometer,” Rev. Sci. Instrum, vol. 39, no. 9, pp. 1342-1345, Sep. 1968.
[39] P. Dudek, S. Szczepancki and J.V. Hatfield, “A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line” IEEE Journal of Solid-State Circuits, vol. 35, no. 2, pp. 240-247, Feb. 2000.
[40] E. Raisanen-Ruotsalainen, T. Rahkonen, J. Kostamovaara, “A low-power CMOS time-to-digital converter,” IEEE Journal of Solid-State Circuits, vol. 30, no. 9, pp. 984-990, Sep. 1995
[41] J. Yuan and C. Svensson, “High-speed CMOS circuit technique,” IEEE Journal of Solid-State Circuits, vol. 24, no. 1, pp. 62-70, Feb. 1989.
[42] A. Hastings, The art of analog layout, Prentice Hall, 2001.
[43] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE Journal of Solid-State Circuits, vol. 24, pp. 1433–1440, May 1989.
[44] X. Dai, C. He, H. Xing, D. Chen, and R. Geiger, “An Nth order central symmetrical layout pattern for nonlinear gradients cancellation,” in Proc. IEEE International Symposium Circuits system., pp. 4835–4838, May 2005
[45] S. Jeong, Z. Foo, Y. Lee, J. Y. Sim, D. Blaauw, D. Sylvester, “A Fully-Integrated 71 nW CMOS Temperature Sensor for Low Power Wireless Sensor Nodes,” IEEE Journal of Solid-State Circuits, vol. 49, no. 8, pp. 1682-1693, August. 2014.
[46] X. Tang, K.P. Pun, W.T. Ng, “A 0.9V 5kS/s resistor-based time-domain temperature sensor in 90nm CMOS with calibrated inaccuracy of −0.6°C/0.8°C from −40°C to 125°C,” Solid-State Circuits Conference, 2013 IEEE Asian, pp. 169 - 172, 11-13 Nov. 2013.
[47] G. Chowdhury and A. Hassibi, “An On-Chip Temperature Sensor With a Self-Discharging Diode in 32-nm SOI CMOS,” IEEE Transactions on Circuits and Systems II, vol. 59, no. 9, pp. 568–572, Sep. 2012.
[48] P. Chen, C. C. Chen, Y. H. Peng, K. M. Wang, Y. S. Wang, “A Time-Domain SAR Smart Temperature Sensor With Curvature Compensation and a 3σ Inaccuracy of -0.4°C ~ +0.6°C Over a 0 °C to 90 °C Range,” IEEE Journal of Solid-State Circuits, vol. 45, no. 3, pp. 600-609, Mar. 2010.
[49] D. D. Venuto and E. Stikvoort, “Low-Power CMOS Smart Temperature Sensor With a Batch-Calibrated Inaccuracy of ±0.25°C (±3σ) from −70°C to 130°C,” IEEE Sensors Journal., vol. 13, no. 5, pp. 1840-1848, May. 2013.
[50] K. Souri, and K. Makinwa, “A 0.12 mm2 7.4 µW Micropower Temperature Sensor With an Inaccuracy of ±0.2°C (3σ) From -30°C to 125°C” IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp 1693-1700, July 2011.
[51] C. K. Wu, W. S. Chan and T. H. Lin, “A 80kS/s 36uW resistor-based temperature sensorusing BGR-free SAR ADC with a unevenly-weighted resistor string in 0.18um CMOS,” IEEE Symposium on VLSI Circuits, pp. 222–223, Jun. 201

無法下載圖示 全文公開日期 2021/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE