簡易檢索 / 詳目顯示

研究生: 胡奕強
Yi-Jiang Hu
論文名稱: 高精度高速低功耗且具電壓校正之時域智慧型溫度感測器
High Accuracy High Speed Low Power Time-Domain Smart Temperature Sensor with Voltage Calibration
指導教授: 陳伯奇
Poki Chen
口試委員: 劉深淵
none
陳怡然
none
李鎮宜
none
莊英宗
none
陳筱青
Hsiao-Chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 115
中文關鍵詞: 智慧型溫度感測器曲率補償循序漸進暫存器電壓校正時域時間至數位轉換器
外文關鍵詞: Smart temperature sensor, Curvature compensation, Successive approximation register, Self-calibration, Time-domain, Time-to-digital converter.
相關次數: 點閱:275下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著超大型積體電路朝向高密度、多用途之系統晶片發展,晶片功率的管理已成為電路設計的重點之一,如果不仔細處理由功率消耗所產生的熱能,可能會使得電路元件被破壞進而影響整個系統的安全性,也會導致後續處理問題的成本增加。為了降低溫度變化對電路造成的影響,在超大型積體電路裡面內建溫度感測器來監控晶片溫度的變化,可以增加系統的可靠性及使用時間。
    本論文提出一種不需恆溫校正之具電壓校正之時域智慧型溫度感測器以降低大量製造時的成本。本溫度感測器主要包含一弛張震盪器在正、負溫度係數參考電壓間震盪,以產生與溫度相關之脈衝寬度,之後再藉由時間至數位轉換器得出對應之數位輸出。晶片校準方面將改採電壓校準以取代恆溫校準,俾便降低製造成本。以TSMC 0.18um 1P6M製程實現電路,供應電壓1.8V,轉換速度高達850k Hz、每次轉換只需318pJ,面積也只需0.095mm2,解析度為0.48°C,感溫範圍從-40°C到120°C,誤差精確度可在-0.9°C ~ +0.8°C內,其效能竟然還優於某些採用單點或雙點校正之作品!況且,對絕大部分商業應用而言,溫度感測器的誤差只被要求落在±1°C之範圍。總之,本設計兼具低成本與高效能,可望為不需恆溫校正之時域智慧型溫度感測器立下傲人之里程碑。


    As VLSI chips pursue high integration density and more functionalities, thermal management becomes an inevitable trend for chip design nowadays. Without proper supervision, the heat built up by undue power consumption may seriously damage the device robustness or even burn out the chip. To reduce the risk of overheating, VLSI chips gradually integrate temperature sensors for thermal monitoring to enhance their reliability and life span.
    A voltage-calibrated time-domain smart temperature sensor without the need of any fixed calibration temperature is proposed in this thesis to reduce the cost of massive production. The sensor mainly composes of a relaxation oscillator oscillating between two CMOS-based CTAT and PTAT references to generate temperature-dependent output pulses. A succeeding time-to-digital converter is utilized for digital output coding. Voltage-domain instead of temperature-domain calibration is adopted to substantially reduce the calibration cost.
    Fabricated in a TSMC 0.18-um standard 1P6M CMOS process, the proposed sensor is measured to operate at a 850k samples/sec high speed. Moreover, each sample consumes only 318pJ. The active area is merely 0.095 mm2 and the resolution is 0.48°C with an inaccuracy less than -0.9°C~0.8°C over a wide temperature range of -40°C~120°C. Its performance is superior to some chips with one- or two-point calibrations. A milestone is thus established for time-domain smart temperature sensors without the need of any fixed-temperature calibration.

    摘 要I AbstractII 誌 謝III 目 錄IV 圖目錄VII 表目錄X 第一章 序論1 1.2 論文架構3 第二章 溫度感測器4 2.1傳統溫度感測元件4 2.2積體式智慧型溫度感測器6 2.2.1雙載子電晶體型溫度感測器7 2.2.1.1與絕對溫度成正比之電路 (PTAT Reference Circuit)8 2.2.1.3類比至數位轉換器(Analog-to-Digital Converter, ADC)12 2.2.1.4雙載子電晶體型溫度感測器結論12 2.2.2振盪器型溫度感測器13 2.2.2.1電流控制振盪器型溫度感測器(1)13 2.2.2.2電流控制振盪器型溫度感測器(2)14 2.2.2.3電流控制振盪器型溫度感測器結論17 2.2.3延遲線型溫度感測器18 2.2.3.1高溫敏延遲線設計19 2.2.3.2低溫敏延遲線設計19 2.2.3.3延遲線型溫度感測器結論20 2.3 積體式溫度感測器之優勢及相關參數21 2.4 結論24 第三章 電壓校正之時域智慧型溫度感測器25 3.1整體架構介紹25 3.2溫度感測26 3.3 CTAT與PTAT 參考電路27 3.3.1 CTAT與PTAT 參考電路設計原理27 3.3.2啟動電路(Start-Up Circuit)30 3.3.3 具抗電壓變異之CTAT與PTAT 參考電路31 3.4比較器34 3.5 14位元低溫敏電流源42 3.5.1低溫敏電流源電路42 3.5.2 14位元二進位電流陣列45 3.6循序逼近暫存器電路(SAR)45 3.7參考電壓分壓電路48 3.8時間至數位轉換器48 3.8.1同步與非同步計數器50 3.8.2計數器型時間至數位轉換器51 3.9電壓校正52 第四章 設計流考量與電路模擬55 4.1設計流程與考量55 4.1.1 類比區塊設計(Analog Block Design)55 4.1.2 數位區塊設計( Digital Block Design )57 4.1.3 混合式設計(Mixed-Mode Design)58 4.2數位區塊與類比區塊劃分之考量58 4.3類比電路設計與模擬59 4.3.1 CTAT與PTAT 參考電路59 4.3.2比較器66 4.3.3低溫敏電流源67 4.3.4溫度感測模擬67 4.4數位電路設計與模擬68 4.4.1時間至數位轉換器68 4.4.2循序逼近暫存器電路(SAR)70 4.5電壓校正71 4.6校正後誤差72 第五章 佈局考量75 第六章 量測結果80 6.1量測考量80 6.2量測結果82 6.2.1量測波形82 6.2.2不同溫度下校正後之誤差與13顆晶片量測結果87 第七章 效能比較與結論90 7.1效能比較90 7.2結論及未來展望93 參考文獻95

    [1] 盧明智、盧鵬任 編著,感測器應用與線路分析,台北:全華出版公司,2000。
    [2] R. Achenbach, M. Feuerstack-Raible, F. Hiller, M. Keller, K. Meier, H. Rudolph, R. Saur-Brosch, “A digitally temperature-compensated crystal oscillator,” IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp. 1502-1506, Oct. 2000.
    [3] C. Poirier, R. McGowen, C. Bostak, S. Naffziger, “Power and temperature control on a 90nm ItaniumR-family processor,” IEEE International Solid-State Circuits Conference, pp. 304-305, Feb. 2005.
    [4] C. Park, H. Chung, Y. S. Lee, J. Kim, J. Lee, M. S. Chae, D. H. Jung, S. H. Choi, S. Y. Seo, T. S. Park, J. H. Shin, J. H. Cho, S. Lee, K. W. Song, K. H. Kim, J. B. Lee, C. Kim, S. I. Cho, “A 512-mb DDR3 SDRAM prototype with CIO minimization and self-calibration techniques,” IEEE Journal of Solid-State Circuits, vol. 41, no. 4, pp. 831-838, Apr. 2006.
    [5] C. Park, H. Chung, Y. S. Lee, J. Kim, J. Lee, M. S. Chae, D. H. Jung, S. H. Choi, S. Y. Seo, T. S. Park, J. H. Shin, J. H. Cho, S. Lee, K. Kim, J. B. Lee, C. Kim, S. I. Cho, “A 512 Mbit, 1.6 Gbps/pin DDR3 SDRAM prototype with C10 minimization and self-calibration techniques,” IEEE Symposium on VLSI Circuits, pp. 370-373, Jun. 2005.
    [6] A. Bakker and J. H. Huijsing, High-Accuracy CMOS Smart Temperature Sensors. Boston:Kluwer Academic Publishers, 2000.
    [7] G. C. M. Meijer, G. Wang, and F. Fruett, “Temperature sensors and voltage references implemented in CMOS technology,” IEEE Sensors Journal., vol. 1, no. 3, pp. 225–234, Oct. 2001.
    [8] A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE Journal of Solid-State Circuits, vol. 31, no. 7, pp. 933-937, Jul. 1996.
    [9] M. Tuthill, “A switched-current, switched-capacitor temperature-sensor in 0.6-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 33, no. 7, pp. 1117-1122, Jul. 1998.
    [10] P. Krummenacher and H. Oguey, “Smart temperature sensor in CMOS technology,” Sensors and Actuators, A21-A23, pp. 636-638, 1990.
    [11] A. Bakker, “CMOS smart temperature sensors-an Overview,” Proc. IEEE Sensors, vol. 2, pp. 1423-1427, Jun. 2002.
    [12] K. E. Kuijk, “A precision reference voltage source,” IEEE Journal of Solid-State Circuits, vol. 8, no. 3, pp. 222-226, Jun. 1973.
    [13] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
    [14] R. Widlar, “New developments in IC voltage regulators,” IEEE International Solid-State Circuits Conference, pp. 158-159, Feb. 1970.
    [15] K. Arabi and B. Kaminska, “Built-in temperature sensors for on-line thermal monitoring of microelectronic structures,” IEEE Computer Design:VLSI in Computers and Processors, (ICCD), pp. 462–467, Oct. 1997.
    [16] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. Oxford University Press, 2002.
    [17] K. Kim, H. Lee, S. Jung and C. Kim, “ A 366kS/s 400uW 0.0013mm2 Frequency-to-Digital Converter Based CMOS Temperature Sensor Utilizing Multiphase Clock” IEEE Custom Integrated Circuits Conf., pp. 203-206, Sep. 2009.
    [18] P. Chen, C. C. Chen, C. C. Tsai, W. F. Lu, “A Time-to-Digital-Converter-Based CMOS Smart Temperature Sensor,” IEEE Journal of Solid-State Circuits, vol. 40, no. 8, pp. 1642-1648, Aug. 2005.
    [19] T. A. Demassa and Z. Ciccone, Digital Integrated Circuits. New York: Wiley, 1996.

    [20] M. K. Law and A. Bermak, “A 405-nW CMOS Temperature Sensor Based on Linear MOS Operation,” IEEE Transactions on Circuits and Systems II, vol. 56, no. 12, pp. 891–895, Dec. 2009.
    [21] I. M. Filanovsky and A. Allam, “Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits,” IEEE Transactions on Circuits and Systems I, vol. 48, no. 7, pp. 876–884, Jul. 2001.
    [22] M. A. P. Pertijs, A. Bakker, and J. H. Huijsing, “A high-accuracy temperature sensor with second-order curvature correction and digital bus interface,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 368–371, May. 2001.
    [23] M. A. P. Pertijs, K. Makinwa and J. H. Huijsing, “A CMOS Smart Temperature Sensor With a 3σ Inaccuracy of 0.1 °C From 55 °C to 125 °C,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2805-2815, Dec. 2005.
    [24] A. L. Aita, M. Pertijs, K. Makinwa, J. H. Huijsing, “A CMOS Smart Temperature Sensor with a Batch-Calibrated Inaccuracy of ±0.25°C (3σ) from -70°C to 130°C,” IEEE International Solid-State Circuits Conference, pp. 342-343, Feb. 2009.
    [25] F. Sebastiano, L. J. Breems, K. A. A. Makinwa, S. Drago, D. M. W. Leenaerts, B. Nauta, “A 1.2V 10μW NPN-Based Temperature Sensor in 65nm CMOS with an Inaccuracy of ±0.2°C (3σ) from –70°C to 125°C,” IEEE International Solid-State Circuits Conference, pp. 312-313, Feb. 2010.
    [26] K. Kim, H. Lee, S. Jung, C. Kim, “ A 366kS/s 400uW 0.0013mm2 Frequency-to-Digital Converter Based CMOS Temperature Sensor Utilizing Multiphase Clock” IEEE Custom Integrated Circuits Conf., pp. 203-206, Sep. 2009.
    [27] C. K. Kim, B. S. Kong, C. G. Lee, Y. H. Jun, “ CMOS Temperature Sensor with Ring Oscillator for Mobile DRAM Self-refresh Control,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3094-3097, May. 2008.

    [28] Y. Ren, C. Wang, H. Hong, “An all CMOS temperature sensor for thermal monitoring of VLSI circuits,” IEEE Circuits and Systems International Conference on Testing and Diagnosis, pp. 1-5, Apr. 2009.
    [29] M. K. Law, A. Bermak, “A Time Domain Differential CMOS Temperature Sensor with Reduced Supply Sensitivity,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2126-2129, May. 2008.
    [30] Y. Tokunaga, S. Sakiyama, A. Matsumoto and S. Dosho, “An on-chip CMOS relaxation oscillator with voltage averaging feedback,” IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1150-1158, Jun. 2010.
    [31] C. Zhao, J. He, S.H. Lee, K. Peterson and R. Geiger, D. Chen "A linear differential output of threshold-based CMOS temperature sensor with enhanced signal range" IEEE Midwest Symposium on Circuits and Systems, Aug. 2010.
    [32] C. Zhao, Y.T. Wang, D. Chen and R. Geiger, “Multi-threshold transistors cell for Low Voltage temperature sensing applications,” IEEE 54th International Midwest Symposium , 2011.
    [33] F. Serra-Graells and J. L. Huertas, “Sub-1-V CMOS proportional-to-absolute temperature references ,” IEEE Journal of Solid-State Circuits, vol. 38, no. 1, Jan. 2003.
    [34] Q.A. Khan, S.K. Wadhwa and K. Misri, “Low power startup circuits for voltage and current reference with zero steady state current,” IEEE International Symposium on Low Power Electronics and Design(ISLPED), Aug. 2003.
    [35] C. Yoo and J. Park, “CMOS current reference with supply and temperature compensation,” IEEE Electronics Letters, vol. 43, no. 25, Dec. 2007.
    [36] D. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons Inc, 1997.
    [37] F. Fiori and P. S. Crovetti, "New Compact Temperature-Compensated CMOS Current Reference" IEEE Transactions on Circuits and Systems II, vol. 52, no. 11, Nov. 2005.
    [38] J. Deveugele and M. S. J. Steyaert, "A 10-bit 250-MS/s Binary-Weighted Current-Steering DAC" IEEE Journal of Solid-State Circuits, vol. 41, no. 2, Feb. 2006.
    [39] A. Rossi, and G. Fucili, “Nonredundant successive approximation register for A/D converters,” IEEE Electronics Letters, vol. 32, no. 12, pp. 1055-1057, June 1996.
    [40] J. Paul A. van der Wagt, Gordon G.Chu, and Christine LConrad, “A Layout Structure for Matching Many Integrated Resistors,” IEEE Transactions on Circuits and Systems I, vol. 51, pp. 186-190, Jan. 2004.
    [41] Y.C. Wang, Y.-Y. Li, F. Budiman and P. Chen, "A LOW POWER PRECISE CURRENT BALANCE LED DRIVER WITH -0.228%~0.198% IMBALANCE AMONG THREE OUTPUT CHANNELS," VLSI CAD 2012.
    [42] R. Nutt, “Digital Time Intervalometer,” Rev. Sci. Instrum, vol. 39, no. 9, pp. 1342-1345, Sep. 1968.
    [43] M.S. Gorbics, J. Kelly, K.M. Roberts and R.L. Sumner, “A high resolution multihit time to digital converter integrated circuit,” IEEE Transaction on Nuclear Science, vol. 44, pp. 379-384, June. 1997.
    [44] N. Abaskharoun, M. Hafed, and G.W. Roberts, “Strategies for on-chip sub-nanosecond signal capture and timing measurements,” IEEE International Symposium on Circuit and Systems, vol. 4, pp. 174-177, 2001.
    [45] P. Dudek, S. Szczepancki and J.V. Hatfield, “A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line” IEEE Journal of Solid-State Circuits, vol. 35, no. 2, pp. 240-247, Feb. 2000.
    [46] E. Raisanen-Ruotsalainen, T. Rahkonen, J. Kostamovaara, “A low-power CMOS time-to-digital converter,” IEEE Journal of Solid-State Circuits, vol. 30, no. 9, pp. 984-990, Sep. 1995.
    [47] J. Yuan and C. Svensson, “High-speed CMOS circuit technique,” IEEE Journal of Solid-State Circuits, vol. 24, no. 1, pp. 62-70, Feb. 1989.
    [48] A. Hastings, The art of analog layout, Prentice Hall, 2001.
    [49] W. Kyoungho, S. Meninger, T. Xanthopoulos, E. Crain, Ha. Dongwan, Ham, “Dual-DLL-Based CMOS All-Digital Temperature Sensor for Microprocessor Thermal Monitoring,” IEEE International Solid-State Circuits Conference, pp. 68-69, 69a, Feb. 2009.
    [50] P. Chen, T. K. Chen, Y. S. Wang, C. C. Chen, “ A Time-Domain Sub-Micro Watt Temperature Sensor With Digital Set-Point Programming,” IEEE Sensors Journal., vol. 9, no. 12, pp. 1639-1646, Dec. 2009.
    [51] P. Chen, C. C. Chen, Y. H. Peng, K. M. Wang, Y. S. Wang, “A Time-Domain SAR Smart Temperature Sensor With Curvature Compensation and a 3σ Inaccuracy of -0.4 °C ~ +0.6 °C Over a 0 °C to 90 °C Range,” IEEE Journal of Solid-State Circuits, vol. 45, no. 3, pp. 600-609, Mar. 2010.
    [52] K. Souri, M. Kashmiri and K. Makinwa, “A CMOS Temperature Sensor with an Energy-Efficient Zoom ADC and an Inaccuracy of ±0.25°C (3σ) from -40°C to 125°C,” IEEE International Solid-State Circuits Conference, pp. 310-311, Feb. 2010.
    [53] F. Sebastiano, L. J. Breems, K. Makinwa, S. Drago, D. M. W. Leenaerts and B. Nauta, “A 1.2V 10μW NPN-Based Temperature Sensor in 65nm CMOS with an Inaccuracy of ±0.2°C (3σ) from –70°C to 125°C,” IEEE International Solid-State Circuits Conference, 312-313, Feb. 2010.

    [54] K.Souri and and K. Makinwa, “A 0.12 mm2 7.4μW Micropower Temperature Sensor with an Inaccuracy of ±0.2°C (3σ) from -30°C to 125°C,” IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp. 1693-1700, July 2011.
    [55] C. K. Wu, W. S. Chan and T. H. Lin, “A 80kS/s 36uW resistor-based temperature sensorusing BGR-free SAR ADC with a unevenly-weighted resistor string in 0.18um CMOS,” IEEE Symposium on VLSI Circuits, pp. 222–223, Jun. 2011.
    [56] G. Chowdhury and A. Hassibi, “An On-Chip Temperature Sensor With a Self-Discharging Diode in 32-nm SOI CMOS” IEEE Transactions on Circuits and Systems II, vol. 59, no. 9, pp. 568–572, Sep. 2012.
    [57] D. D. Venuto and E. Stikvoort, “Low-Power CMOS Smart Temperature Sensor With a Batch-Calibrated Inaccuracy of ±0.25 °C (±3σ) from −70 °C to 130 °C” IEEE Sensors Journal., vol. 13, no. 5, pp. 1840-1848, May. 2013.
    [58] K. Souri, Y. Chae, and K. Makinwa, “A CMOS Temperature Sensor With a Voltage-Calibrated Inaccuracy of 0.15 °C (3σ) From 55 °C to 125 °C” IEEE Journal of Solid-State Circuits, vol. 48, no. 1, pp. 292-301, Jan. 2013.

    無法下載圖示 全文公開日期 2018/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE