簡易檢索 / 詳目顯示

研究生: 羅立澤
Li-Tse Lo
論文名稱: 低PVT變異敏感性之高精度時域智慧型溫度感測器
A Low PVT Sensitivity High Accuracy Time-Domain Smart Temperature Sensor
指導教授: 陳伯奇
Poki Chen
口試委員: 黃育賢
Yuh-Shyan Hwang
陳信樹
Hsin-Shu Chen
陳筱青
Hsiao-Chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 107
中文關鍵詞: 系統晶片類比至數位轉換器時域溫度感測器單點校正
外文關鍵詞: SOC, ADC, Time-domain temperature sensor, One-point Calibration
相關次數: 點閱:176下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文名稱:低PVT變異敏感性之高精度時域智慧型溫度感測器
    校所別:國立台灣科技大學 電子工程研究所
    研究生:羅立澤 指導教授:陳伯奇 博士

    高密度、小面積且具多用途之系統晶片已是當今主流,強大的功能總是伴隨著高功率的消耗,因此功率的管理已成為電路設計的重點之一,如果不仔細處理由功率消耗所產生的熱能,那將會使得電路元件被破壞進而影響整個系統的安全性,也會導致後續處理問題的成本增加。為了降低溫度變化對電路造成的影響,在超大型積體電路裡面內建一個溫度感測器來監控溫度的變化,將會使得系統的可靠性及使用時間增加。
    本論文所提出之溫度感測器具有小面積、低功耗、低供應電壓敏感度且高精度之效能,可以有效的扮演溫度監控的角色,架構上沒有使用複雜的類比至數位轉換器當電路轉換的媒介,而是以操作在時域之溫度感測器作為研究基礎,並採用增益可調時間放大器(Variable Gain Time Amplifier)來支援單點校正以大幅壓低量產成本。
    本晶片是由TSMC 0.18 µm CMOS 1P6M 1.8 V/3.3 V製程生產,線性度為-0.57 ~+0.68 ℃、面積:0.249 mm2、解析度:0.05 ℃、溫度量測範圍:0~100 ℃,而功率消耗僅有3 µW @ 1 Sample/s 。


    Title:A Low PVT Sensitivity High Accuracy Time-Domain Smart Temperature Sensor
    School:National Taiwan University of Science and Technology
    Department:Department of Electronic Engineering
    Researcher:Li-Tse Lo Advisor:Dr. Poki Chen

    The performance upgrade of chips is usually accompanied by the increment power consumption. Along with the pursuing of high integration density and small chip size, thermal management becomes an inevitable trend for chip design nowadays. Without proper supervision, the heat built up by power consumption may seriously damage the device robustness or even burn out the chip. To reduce the risk of overheating, VLSI chips gradually integrate temperature sensors for thermal monitoring to enhance their reliability and life time.
    A smart temperature sensor featuring small die size, low power, low supply voltage sensitivity but high accuracy is proposed in this thesis. Since all signals are processed in time-domain, no subtle analog-to-digital converter or operational amplifier is used. The chip size and power consumption can be substantially reduced. A variable gain time amplifier is adopted to support one-point calibration for the cost down of mass production.
    The chip was fabricated in a TSMC 0.18 µm 1P6M 1.8 V/3.3V standard CMOS process. The chip size is merely 0.249 mm2. The resolution, measurement range and power consumption are 0.05°C, 0~100°C and 3µW @ 1Sample/s, respectively.

    摘要....................................................................I Abstract................................................................II 誌謝....................................................................III 圖目錄..................................................................VI 表目錄..................................................................X 第一章 序論.............................................................1 1.1研究動機.............................................................1 1.2論文架構.............................................................3 第二章 溫度感測器.......................................................4 2.1傳統溫度感測元件.....................................................4 2.2積體式溫度感測器.....................................................8 2.2.1典型的積體式溫度感測器結構.........................................8 2.2.2四電晶體之溫度感測器...............................................15 2.2.3電流控制振盪器式之溫度感測器.......................................19 2.2.4應用次臨界傳導區漏電流之溫度感測器.................................24 2.3積體式溫度感測器之優勢及相關參數.....................................27 2.4結論.................................................................29 第三章 內建穩壓電路之時域智慧型溫度感測器...............................31 3.1整體架構介紹.........................................................31 3.2內建穩壓電路方塊介紹.................................................32 3.2.1低功率穩壓電路架構.................................................34 3.3溫度感測器方塊介紹...................................................40 3.3.1溫度感測器電路架構.................................................41 3.3.1.1環型振盪器.......................................................41 3.4低電壓、低頻率飄移和低製程變異的內建振盪器...........................44 3.4.1相關研究現況與發展.................................................44 3.4.2內建式振盪器電路介紹...............................................45 3.4.3內建式振盪器電路架構...............................................47 3.4.3.1遲滯振盪器(Relaxation Oscillator)................................47 3.4.3.2電壓平均反饋電路(Voltage Averaging Feedback Circuit).............48 3.4.3.3內建遲滯振盪器運作順序...........................................51 3.5數位電路.............................................................52 3.6電路模擬.............................................................55 3.7結論.................................................................67 第四章 低供應電壓靈敏度之時域智慧型溫度感測器...........................68 4.1整體架構介紹....................................................68 4.2溫度感測器方塊介紹..............................................69 4.3 PTAT電路架構...................................................70 4.4自我調節式電壓控制振盪器電路架構................................70 4.5電路模擬........................................................73 第五章 佈局考量.........................................................81 5.1佈局考量........................................................81 第六章 量測考量與單點校正...............................................84 6.1量測考量............................................................84 6.2單點校正(One-Point Calibration).....................................85 第七章 效能比較與結論...................................................88 7.1效能比較............................................................88 7.2結論及未來展望......................................................90 參考文獻................................................................92

    [1] 盧明智、盧鵬任 編著,感測器應用與線路分析,台北:全華出版公司,2000。
    [2] R. Achenbach, M. Feuerstack-Raible, F. Hiller, M. Keller, K. Meier, H. Rudolph, R. Saur-Brosch, “A digitally temperature-compensated crystal oscillator,” IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp. 1502-1506, Oct. 2000.
    [3] C. Poirier, R. McGowen, C. Bostak, S. Naffziger, “Power and temperature control on a 90nm Itanium®-family processor,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 304-305, Jun. 2005.
    [4] C. Park, H. Chung, Y. S. Lee, J. Kim, J. Lee, M. S. Chae, D. H. Jung, S. H. Choi, S. Y. Seo, T. S. Park, J. H. Shin, J. H. Cho, S. Lee, K. W. Song, K. H. Kim, J. B. Lee, C. Kim, S. I. Cho, “A 512-mb DDR3 SDRAM prototype with CIO minimization and self-calibration techniques,” IEEE Journal of Solid-State Circuits, vol. 41, no. 4, pp. 831-838, Apr. 2006.
    [5] C. Park, H. Chung, Y. S. Lee, J. Kim, J. Lee, M. S. Chae, D. H. Jung, S. H. Choi, S. Y. Seo, T. S. Park, J. H. Shin, J. H. Cho, S. Lee, K. Kim, J. B. Lee, C. Kim, S. I. Cho, “A 512 Mbit, 1.6 Gbps/pin DDR3 SDRAM prototype with C10 minimization and self-calibration techniques,” VLSI circuit, Digest of Technical Symposium on IEEE Conf. , pp. 370-373, Jun. 2005.
    [6] A. Bakker and J. H. Huijsing, High-Accuracy CMOS Smart Temperature Sensors. Boston:Kluwer Academic Publishers, 2000.
    [7] G. C. M. Meijer, G. Wang, and F. Fruett, “Temperature sensors and voltage references implemented in CMOS technology,” IEEE Sensors Journal., vol. 1, no. 3, pp. 225–234, Oct. 2001.
    [8] A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE Journal of Solid-State Circuits, vol. 31, no. 7, pp. 933-937, Jul. 1996.
    [9] M. Tuthill, “A switched-current, switched-capacitor temperature-sensor in 0.6-µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 33, no. 7, pp. 1117-1122, Jul. 1998.
    [10] P. Krummenacher and H. Oguey, “Smart temperature sensor in CMOS technology,” Sensors and Actuators, A21-A23, pp. 636-638, 1990.
    [11] A. Bakker, “CMOS smart temperature sensors-an Overview,” Proc. IEEE Sensors, vol. 2, pp. 1423-1427, Jun. 2002.
    [12] K. E. Kuijk, “A precision reference voltage source,” IEEE Journal of Solid-State Circuits, vol. 8, no. 3, pp. 222-226, Jun. 1973.
    [13] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
    [14] R. Widlar, “New developments in IC voltage regulators,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 158-159, Feb. 1970.
    [15] S. J. Chang, Advanced analog IC design, EE, NCKU, 2003.
    [16] M. Sasaki, M. Ikeda and K. Asada. “A Temperature sensor with an inaccuracy of -1/+0.8℃ using 90-nm 1-V CMOS for online thermal monitoring of VLSI circuits,” IEEE Transaction on Semiconductor Manufacturing. vol. 21, pp. 201 - 208, May. 2008.
    [17] I. M. Filanovsky and A. Allam, “Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits,” IEEE Transactions on Circuits and Systems I, vol. 48, no. 7, pp. 876–884, Jul. 2001.
    [18] K. Arabi and B. Kaminska, “Built-in temperature sensors for on-line thermal monitoring of microelectronic structures,” IEEE Computer Design:VLSI in Computers and Processors, (ICCD), pp. 462–467, Oct. 1997.
    [19] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. Oxford University Press, 2002.
    [20] P. Ituero, J. L. Ayala, M. Lopez-Vallejo, “Leakage-based On-Chip Thermal Sensor for CMOS Technology,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3327-3330, 2007.
    [21] M. K. Law, A. Bermak, “A 405-nW CMOS Temperature Sensor Based on Linear MOS Operation,” IEEE Transactions on Circuits and Systems II, vol. 56, no. 12, pp. 891–895, Dec. 2009.
    [22] M. A. P. Pertijs, A. Bakker, and J. H. Huijsing, “A high-accuracy temperature sensor with second-order curvature correction and digital bus interface,” in Proc. IEEE International Symposium on Circuits and Systems (ISCAS), pp. 368–371, May. 2001.
    [23] M. A. P. Pertijs, K. A. A. Makinwa, J. H. Huijsing, “A CMOS Smart Temperature Sensor With a 3σ Inaccuracy of 0.1 °C From 55 °C to 125 °C,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2805-2815, Dec. 2005.
    [24] A. L. Aita, M. Pertijs, K. Makinwa, J. H. Huijsing, “A CMOS Smart Temperature Sensor with a Batch-Calibrated Inaccuracy of ±0.25°C (3σ) from -70°C to 130°C,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 342-343, Feb. 2009.
    [25] F. Sebastiano, L. J. Breems, K. A. A. Makinwa, S. Drago, D. M. W. Leenaerts, B. Nauta, “A 1.2V 10μW NPN-Based Temperature Sensor in 65nm CMOS with an Inaccuracy of ±0.2°C (3σ) from –70°C to 125°C,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 312-313, Feb. 2010.
    [26] P. Chen, C. C. Chen, C. C. Tsai, W. F. Lu, “A Time-to-Digital-Converter-Based CMOS Smart Temperature Sensor,” IEEE Journal of Solid-State Circuits, vol. 40, no. 8, pp. 1642-1648, Aug. 2005.
    [27] K. Kim, H. Lee, S. Jung, C. Kim, “ A 366kS/s 400uW 0.0013mm2 Frequency-to-Digital Converter Based CMOS Temperature Sensor Utilizing Multiphase Clock” in Proc. Custom Integrated Circuits Conf., pp. 203-206, Sep. 2009.
    [28] C. K. Kim, B. S. Kong, C. G. Lee, Y. H. Jun, “ CMOS Temperature Sensor with Ring Oscillator for Mobile DRAM Self-refresh Control,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3094-3097, May. 2008.
    [29] Y. Ren, C. Wang, H. Hong, “An all CMOS temperature sensor for thermal monitoring of VLSI circuits,” IEEE Circuits and Systems International Conference on Testing and Diagnosis, pp. 1-5, Apr. 2009.
    [30] M. K. Law, A. Bermak, “A Time Domain Differential CMOS Temperature Sensor with Reduced Supply Sensitivity,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2126-2129, May. 2008.
    [31] H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, K. Sakui, “A CMOS Bandgap Reference Circuit with Sub-1-V Operation,” IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 670-674, May. 1999.
    [32] R. J. Baker, CMOS:Circuit Design, Layout, And Simulation 2/E. New York: Wiley, 2005.
    [33] E. Kargaran, H. Kaosrowjerdi and K. Ghaffarzaffarzadegan, “A 1.5 V High Swing Ultra-Low-Power Two Stage CMOS OP-AMP in 0.18um Technology.” 2010 2nd International Conference on Mechanical and Electronics Engineering (ICMEE 2010).
    [34] Y. Tsivids, Operation and modeling of the MOS transistor, New York: McGraw-Hill, 1988.
    [35] A. D. Thomas,C. Zack, Digital Integrated Circuits, New York: Wiley, 1996.
    [36] N. T. Trung, K. Shon, S. W. Kim, “A Delay Line with Highly Linear Thermal Sensitivity for Smart Temperature Sensor,” Midwest Circuits and Syatems Symposium on IEEE Conf, pp. 899-902, Aug. 2007.
    [37] Y.-S. Shyu and J. -C. Wu, “A process and temperature compensated ring oscillator,” in Proc. Asia Pacific Conf. ASIC, pp. 283-286 , Aug. 1999.
    [38] K.Sundaresan, P. E. Allen, and F. Ayazi, “Process and temperature compensated in a 7-MHz CMOS clock oscillator,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 433-442, Feb. 2006.
    [39] Y. Tokunaga, S. Sakiyama, A. Matsumoto, S. Dosho, “An on-chip CMOS relaxation oscillator with power averaging feedback using a reference proportional to supply voltage,” IEEE International Solid-State Circuits Conference, pp. 404-405, Feb. 2006.
    [40] Y. Tokunaga, S. Sakiyama, A. Matsumoto, S. Dosho, “An on-chip CMOS relaxation oscillator with voltage averaging feedback,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1150-1158, Jun. 2010.
    [41] I. C. Hwang, C. Kim, and S. –M. Kang, “A self-regulating VCO with supply sensitivity of <0.15%-Delay/1%-Supply,” IEEE International Solid-State Circuits Conf.(ISSCC) Dig. , Tech. Papers, vol. 2, pp. 140-141, Feb. 2002.
    [42] I. C. Hwang, C. Kim, and S. –M. Kang, “A self-regulating VCO with low supply sensitivity ,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 42-48, Jan. 2004.
    [43] A. Hastings, The art of analog layout, Prentice Hall, 2001.
    [44] J. P. A. van der Wagt, G. G. Chu, C. L. Conrad, “A Layout Structure for Matching Many Integrated Resistors,” IEEE Transactions on Circuits and Systems I, vol. 51, no. 1, pp. 186-190, Jan. 2004.
    [45] P. Ituero, J. L. Ayala, M. Lopez-Vallejo, “A Nanowatt Smart Temperature Sensor for Dynamic Thermal Management,” IEEE Sensors Journal., vol. 8, no. 12, pp. 2036-2043, Dec. 2008.
    [46] W. Kyoungho, S. Meninger, T. Xanthopoulos, E. Crain, Ha. Dongwan, Ham, “Dual-DLL-Based CMOS All-Digital Temperature Sensor for Microprocessor
    Thermal Monitoring,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 68-69, 69a, Feb. 2009.
    [47] P. Chen, T. K. Chen, Y. S. Wang, C. C. Chen, “ A Time-Domain Sub-Micro Watt Temperature Sensor With Digital Set-Point Programming,” IEEE Sensors Journal., vol. 9, no. 12, pp. 1639-1646, Dec. 2009.
    [48] P. Chen, C. C. Chen, Y. H. Peng, K. M. Wang, Y. S. Wang, “A Time-Domain SAR Smart Temperature Sensor With Curvature Compensation and a 3σ Inaccuracy of 0.4 ℃ ∼ +0.6 ℃ Over a 0 ℃ to 90 ℃ Range,” IEEE Journal of Solid-State Circuits, vol. 45, no. 3, pp. 600-609, Mar. 2010.
    [49] K. Souri, M. Kashmiri, K. Makinwa, “A CMOS Temperature Sensor with an Energy-Efficient Zoom ADC and an Inaccuracy of ±0.25°C (3σ) from -40°C to 125°C,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 310-311, Feb. 2010.

    無法下載圖示 全文公開日期 2016/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE