簡易檢索 / 詳目顯示

研究生: 張婷維
Ting-Wei Chang
論文名稱: 以異質結構背電極開發高效穩定性之量子點敏化太陽能電池
Efficient and stable quantum dots-sensitized solar cells through heterostructured counter electrodes
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 江佳穎
Chia-Ying Chiang
林正嵐
Cheng-Lan Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 128
中文關鍵詞: 量子點敏化太陽能電池背電極量子點
外文關鍵詞: Quantum dots-sensitized solar cell, Counter electrode, Quantum dots
相關次數: 點閱:250下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用二步合成法,其中包含了網印法與液滴塗佈法。PART I為網印法,先使用微波輔助合成法,合成CuS奈米材料,藉由網印法搭配高溫燒結,得到CuxS背電極。此製程優勢在於透過微波輔助法可以快速合成材料且精確調控材料晶型,並藉由網印法控制薄膜厚度,同時,使用高溫燒結能提高材料的結晶性,以及能使材料更穩固的貼附於導電玻璃上。透過SEM材料分析得知經微波輔助合成法得到類棒狀結構的CuS奈米材料,經網印高溫燒結後得到網狀結構的CuxS。另外,CuxS 背電極經由XRD結構分析得知,CuxS由CuS與Cu2S所構成。由電池量測穩定性分析也證實相較於傳統化學浴沉積法能有效提高電池的壽命。除此之外,此方法也可以製作出PbxS、NixS與CoxS背電極,經元件測試得知,CuxS背電極為最高光電轉換效率7.24 %,其他背電極的光電轉換效率分別為PbxS的5.20 %、NixS的1.94 %及CoxS的3.12 %。
PART II為液滴塗佈法,將Se前驅物披覆在CuxS背電極上,藉由不同材料Ksp的差異,形成CuxS@CuxSe異質結構。當Se前驅物加入20 L於CuxS背電極時,具有最高光電轉換效率8.02 %,其中以FF值上升最多由49.6 %上升至54.5 %。因此,藉由電化學分析證實在CuxS外殼形成CuxSe結構,有利於電子的傳遞與背電極的催化,同時,此結構有助於Se2-解離至多硫化物電解液中,形成多硒硫化物電解液,利於清除量子點價帶上的電洞。透過電池量測穩定性分析證實,藉由CuxS@CuxSe結構,量測至120 hrs仍有原光電轉換效率的一半。



In this paper, we adopted a two-step synthesis method that involves screen printing and drop coating techniques to improve the traditional process. In Part I, we introduced the basics of screen printing. The CuS electroatalyst was first synthesized using a microwave-assisted synthesis, followed by screen printing and annealing to obtain the CuxS counter electrode (CE). Screen printing were found to be useful in adjusting film thickness, and making the material more stable on FTO glass substrate, respectively. According to SEM and XRD results, the combination of CuS and Cu2S produced CuxS CE with net-like morphology. The stability analysis of power conversion efficiency (PCE) data suggests that this approach can greatly extend cell lifetime when compared to chemical bath deposition. Furthermore, this method can produce CEs from PbxS, NixS and CoxS. Device measurements show that, in comparison with other counter electrodes, the maximum PCE value of 7.24 % was shown by CuxS CE.
In Part II, a CuxS@CuxSe heterostructure CE was fabricated utilizing the drop-casting technique, in which Se precursor was incorporated on the CuxS CE. The maximum PCE of 8.02 % was obtained when only 20 L Se precursor were added to CuxS CE. The CE's electrodynamic behavior was investigated using electrochemical impedance spectroscopy (EIS), Tafel, and cyclic voltammetry (CV). Thus, CuxSe shell-like structure was formed on the CuxS particles, helping to enhance electron transfer rate and boost high catalytic activity. This structure also disassociates Se2-, which is useful in the fabrication of polyselenosulfide electrolyte to scavenge photo-generated holes. The stability result after 120 hrs reveals that the PCE value drops to half of its initial value due to the CuxS@CuxSe structure.

摘要 I Abstract II 總目錄 III 圖目錄 VI 表目錄 XI 一、緒論 1 1.1 前言 1 1.2 太陽能電池發展 2 1.2.1 第一代---矽晶太陽能電池 3 1.2.2 第二代---薄膜太陽能電池 4 1.2.3 第三代---敏化太陽能電池 4 1.3 研究動機 6 二、文獻回顧 7 2.1 量子點 7 2.1.1 量子侷限效應 Quantum confinement effect 7 2.1.2 多重激子效應 Multiple exciton generation 10 2.1.3 迷你傳導帶效應 Minibands effect 12 2.2 量子點敏化太陽能電池 (Quantum dots of sensitized solar cell , QDSSC) 13 2.2.1 基本原理 13 2.2.2 元件介紹 15 2.2.3 背電極製備方法 33 2.2.4 離子交換法與其應用 37 三、實驗步驟 50 3.1 實驗藥品 50 3.2 實驗儀器 53 3.3 實驗流程簡介 55 3.4 導電玻璃清洗 56 3.5 光電極薄膜基板製備 57 3.5.1 TiCl4前處理 57 3.5.2網印法網印TiO2薄膜 57 3.6 量子點敏化劑製備 58 3.6.1 Cu-In-S前驅物母液製備 58 3.6.2 Cu-In-S量子點合成 58 3.6.3量子點敏化劑配製 59 3.7 ZnS鈍化層 59 3.7.1前驅物溶液配製 59 3.7.2 ZnS鈍化層沉積 59 3.8 電解液之配製 60 3.9 背電極製備 60 3.9.1 CuS奈米材料合成 60 3.9.2 CuxS背電極製備 60 3.9.3 CuxS@CuxSe背電極製備 61 3.10 電池元件封裝 61 四、結果與討論 62 4.1電池元件之結構分析 63 4.1.1光電極之結構分析 63 4.1.2背電極之結構分析 65 4.2 PART I‐不同製程之背電極穩定度比較與不同金屬硫化物之比較 74 4.2.1光電轉換效率分析之基本原理 74 4.2.2不同製程之背電極穩定度 76 4.2.3不同金屬硫化物背電極光電轉換效率之分析 79 4.3 PART II‐CuxS@CuxSe異質結構背電極 81 4.3.1背電極光電轉換效率分析 81 4.3.2穩定度之比較 83 4.4背電極之電化學分析 86 4.4.1電化學阻抗分析(Electrochemical impedance spectroscopy, EIS) 86 4.4.2 Tafel量測分析 90 4.4.3循環伏安法量測分析(Cyclic voltammetry, CV) 93 4.5背電極對光電轉換效率各值(JSC、VOC、FF)之影響 96 五、結論與未來展望 99 參考文獻 100

1. D. P. Van Vuuren and A. Faber, Growing within limits. A report to the Global Assembly 2009 of the Club of Rome, (2009).
2. N. S. Lewis, G. Crabtree, A. J. Nozik, M. R. Wasielewski, P. Alivisatos, H. Kung, J. Tsao, E. Chandler, W. Walukiewicz and M. Spitler, Basic research needs for solar energy utilization. report of the basic energy sciences workshop on solar energy utilization, april 18-21, 2005, (2005).3
3. D. M. Chapin, C. S. Fuller and G. L. Pearson, A new silicon p‐n junction photocell for converting solar radiation into electrical power, Journal of applied physics 25 (5), 676-677 (1954).
4. L. Kazmerski, Best research cell efficiencies chart, National Renewable Energy Laboratory (NREL) (2012).
5. V. T. Chebrolu and H.-J. Kim, Recent progress in quantum dot sensitized solar cells: An inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode, Journal of Materials Chemistry C 7 (17), 4911-4933 (2019).
6. E. Centurioni and D. Iencinella, Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance, IEEE Electron Device Letters 24 (3), 177-179 (2003).
7. H. Charles Jr and A. Ariotedjo, Review of amorphous and polycrystalline thin film silicon solar cell performance parameters, Solar Energy 24 (4), 329-339 (1980).
8. W. Shockley and H. J. Queisser, Detailed balance limit of efficiency of p‐n junction solar cells, Journal of applied physics 32 (3), 510-519 (1961).
9. C. Battaglia, A. Cuevas and S. De Wolf, High-efficiency crystalline silicon solar cells: status and perspectives, Energy & Environmental Science 9 (5), 1552-1576 (2016).
10. H. Tributsch and M. Calvin, Electrochemistry of excited molecules: photo‐electrochemical reactions of chlorophylls, Photochemistry and Photobiology 14 (2), 95-112 (1971).
11. M. K. Nazeeruddin, E. Baranoff and M. Grätzel, Dye-sensitized solar cells: a brief overview, Solar energy 85 (6), 1172-1178 (2011).
12. M. Kouhnavard, S. Ikeda, N. Ludin, N. A. Khairudin, B. Ghaffari, M. Mat-Teridi, M. Ibrahim, S. Sepeai and K. Sopian, A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells, Renewable and Sustainable Energy Reviews 37, 397-407 (2014).
13. Y. Wang and N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties, The Journal of Physical Chemistry 95 (2), 525-532 (1991).
14. M. Green, Solution routes to III-V semiconductor quantum dots: Nanotechnology: Quatum dots, Current opinion in solid state & materials science 6 (4), 355-363 (2002).
15. A. Credi, Photoactive Semiconductor Nanocrystal Quantum Dots. (Springer, 2016).
16. C. de Mello Donega, Synthesis and properties of colloidal heteronanocrystals, Chemical Society Reviews 40 (3), 1512-1546 (2011).
17. P. Guyot-Sionnest, M. Shim, C. Matranga and M. Hines, Intraband relaxation in CdSe quantum dots, Physical Review B 60 (4), R2181 (1999).
18. A. J. Nozik, Quantum dot solar cells, Physica E: Low-dimensional Systems and Nanostructures 14 (1-2), 115-120 (2002).
19. E. Shanthi, A. Banerjee, V. Dutta and K. Chopra, Electrical and optical properties of tin oxide films doped with F and (Sb+ F), Journal of Applied Physics 53 (3), 1615-1621 (1982).
20. D. Fraser and H. Cook, Film deposition with the Sputter Gun, Journal of Vacuum Science and Technology 14 (1), 147-151 (1977).
21. L. Davis, Properties of transparent conducting oxides deposited at room temperature, Thin Solid Films 236 (1-2), 1-5 (1993).
22. J. Desilvestro, M. Graetzel, L. Kavan, J. Moser and J. Augustynski, Highly efficient sensitization of titanium dioxide, Journal of the American Chemical Society 107 (10), 2988-2990 (1985).
23. L. Li, X. Yang, J. Zhao, J. Gao, A. Hagfeldt and L. Sun, Efficient organic dye sensitized solar cells based on modified sulfide/polysulfide electrolyte, Journal of Materials Chemistry 21 (15), 5573-5575 (2011).
24. L. Li, X. Yang, J. Gao, H. Tian, J. Zhao, A. Hagfeldt and L. Sun, Highly efficient CdS quantum dot-sensitized solar cells based on a modified polysulfide electrolyte, Journal of the American Chemical Society 133 (22), 8458-8460 (2011).
25. J. H. Bang and P. V. Kamat, Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe, ACS nano 3 (6), 1467-1476 (2009).
26. L. Vayssieres, K. Keis, S.-E. Lindquist and A. Hagfeldt, Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO, The Journal of Physical Chemistry B 105 (17), 3350-3352 (2001).
27. S. Ferrere, A. Zaban and B. A. Gregg, Dye sensitization of nanocrystalline tin oxide by perylene derivatives, The Journal of Physical Chemistry B 101 (23), 4490-4493 (1997).
28. P. Tiwana, P. Docampo, M. B. Johnston, H. J. Snaith and L. M. Herz, Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells, ACS nano 5 (6), 5158-5166 (2011).
29. Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin and P. Péchy, The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells, Zeitschrift für physikalische chemie 221 (3), 319-327 (2007).
30. C. Cavallo, F. Di Pascasio, A. Latini, M. Bonomo and D. Dini, Nanostructured semiconductor materials for dye-sensitized solar cells, Journal of Nanomaterials 2017 (2017).
31. S. Wang, X. Zhang, G. Zhou and Z.-S. Wang, Double-layer coating of SrCO3/TiO2 on nanoporous TiO2 for efficient dye-sensitized solar cells, Physical Chemistry Chemical Physics 14 (2), 816-822 (2012).
32. O. Kruse, J. Rupprecht, J. H. Mussgnug, G. C. Dismukes and B. Hankamer, Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies, Photochemical & Photobiological Sciences 4 (12), 957-970 (2005).
33. S. Li, Z. Chen, T. Li, H. Gao, C. Wei, W. Li, W. Kong and W. Zhang, Vertical nanosheet-structured ZnO/TiO2 photoelectrodes for highly efficient CdS quantum dot sensitized solar cells, Electrochimica Acta 127, 362-368 (2014).
34. L. Tao, Y. Xiong, H. Liu and W. Shen, High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO 2 nanotube arrays, Nanoscale 6 (2), 931-938 (2014).
35. R. Ghosh Chaudhuri and S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications, Chemical reviews 112 (4), 2373-2433 (2012).
36. J. Wang, I. Mora-Seró, Z. Pan, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong and J. Bisquert, Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells, Journal of the American Chemical Society 135 (42), 15913-15922 (2013).
37. G. S. Selopal, H. Zhao, G. Liu, H. Zhang, X. Tong, K. Wang, J. Tang, X. Sun, S. Sun and F. Vidal, Interfacial engineering in colloidal “giant” quantum dots for high-performance photovoltaics, Nano Energy 55, 377-388 (2019).
38. J. Luo, H. Wei, Q. Huang, X. Hu, H. Zhao, R. Yu, D. Li, Y. Luo and Q. Meng, Highly efficient core–shell CuInS2–Mn doped CdS quantum dot sensitized solar cells, Chemical Communications 49 (37), 3881-3883 (2013).
39. C.-H. M. Chuang, P. R. Brown, V. Bulović and M. G. Bawendi, Improved performance and stability in quantum dot solar cells through band alignment engineering, Nature materials 13 (8), 796-801 (2014).
40. J. Du, Z. Du, J.-S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun and X. Zhong, Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%, Journal of the American Chemical Society 138 (12), 4201-4209 (2016).
41. Y. Dong, J. Choi, H.-K. Jeong and D. H. Son, Hot electrons generated from doped quantum dots via upconversion of excitons to hot charge carriers for enhanced photocatalysis, Journal of the American Chemical Society 137 (16), 5549-5554 (2015).
42. S.-H. Hsu, S.-F. Hung and S.-H. Chien, CdS sensitized vertically aligned single crystal TiO2 nanorods on transparent conducting glass with improved solar cell efficiency and stability using ZnS passivation layer, Journal of power sources 233, 236-243 (2013).
43. S. Hachiya, Q. Shen and T. Toyoda, Effect of ZnS coatings on the enhancement of the photovoltaic properties of PbS quantum dot-sensitized solar cells, Journal of Applied Physics 111 (10), 104315 (2012).
44. F. Huang, J. Hou, H. Wang, H. Tang, Z. Liu, L. Zhang, Q. Zhang, S. Peng, J. Liu and G. Cao, Impacts of surface or interface chemistry of ZnSe passivation layer on the performance of CdS/CdSe quantum dot sensitized solar cells, Nano Energy 32, 433-440 (2017).
45. F. Huang, J. Hou, Q. Zhang, Y. Wang, R. C. Massé, S. Peng, H. Wang, J. Liu and G. Cao, Doubling the power conversion efficiency in CdS/CdSe quantum dot sensitized solar cells with a ZnSe passivation layer, Nano Energy 26, 114-122 (2016).
46. M. A. Abate and J.-Y. Chang, Boosting the efficiency of AgInSe2 quantum dot sensitized solar cells via core/shell/shell architecture, Solar Energy Materials and Solar Cells 182, 37-44 (2018).
47. V. Chakrapani, D. Baker and P. V. Kamat, Understanding the role of the sulfide redox couple (S2–/Sn2–) in quantum dot-sensitized solar cells, Journal of the American Chemical Society 133 (24), 9607-9615 (2011).
48. Q. Tang, H. Cai, S. Yuan and X. Wang, Counter electrodes from double-layered polyaniline nanostructures for dye-sensitized solar cell applications, Journal of Materials Chemistry A 1 (2), 317-323 (2013).
49. B. He, Q. Tang, T. Liang and Q. Li, Efficient dye-sensitized solar cells from polyaniline–single wall carbon nanotube complex counter electrodes, Journal of Materials Chemistry A 2 (9), 3119-3126 (2014).
50. Y.-L. Lee and C.-H. Chang, Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells, Journal of Power Sources 185 (1), 584-588 (2008).
51. P. Lukashev, W. R. Lambrecht, T. Kotani and M. van Schilfgaarde, Electronic and crystal structure of Cu2−xS: full-potential electronic structure calculations, Physical Review B 76 (19), 195202 (2007).
52. M. Buerger and B. J. Wuensch, Distribution of atoms in high chalcocite, Cu2S, Science 141 (3577), 276-277 (1963).
53. C. S. Kim, S. H. Choi and J. H. Bang, New insight into copper sulfide electrocatalysts for quantum dot-sensitized solar cells: composition-dependent electrocatalytic activity and stability, ACS applied materials & interfaces 6 (24), 22078-22087 (2014).
54. J. Jean, S. Chang, P. R. Brown, J. J. Cheng, P. H. Rekemeyer, M. G. Bawendi, S. Gradečak and V. Bulović, ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells, Advanced materials 25 (20), 2790-2796 (2013).
55. N. Zhao, T. Osedach, L. Chang, S. Geyer, D. Wanger, M. Binda, A. Arango, M. Bawendi and V. Bulovic, (2010).
56. C.-Y. Lin, C.-Y. Teng, T.-L. Li, Y.-L. Lee and H. Teng, Photoactive p-type PbS as a counter electrode for quantum dot-sensitized solar cells, Journal of Materials Chemistry A 1 (4), 1155-1162 (2013).
57. M. S. Faber, K. Park, M. Caban-Acevedo, P. K. Santra and S. Jin, Earth-abundant cobalt pyrite (CoS2) thin film on glass as a robust, high-performance counter electrode for quantum dot-sensitized solar cells, The journal of physical chemistry letters 4 (11), 1843-1849 (2013).
58. Y. Shengyuan, A. S. Nair, Z. Peining and S. Ramakrishna, Electrospun TiO2 nanostructures sensitized by CdS in conjunction with CoS counter electrodes: Quantum dot-sensitized solar cells all prepared by successive ionic layer adsorption and reaction, Materials Letters 76, 43-46 (2012).
59. Z. Yang, C.-Y. Chen, C.-W. Liu and H.-T. Chang, Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells, Chemical Communications 46 (30), 5485-5487 (2010).
60. H.-J. Kim, D.-J. Kim, S. S. Rao, A. D. Savariraj, K. Soo-Kyoung, M.-K. Son, C. V. Gopi and K. Prabakar, Highly efficient solution processed nanorice structured NiS counter electrode for quantum dot sensitized solar cells, Electrochimica Acta 127, 427-432 (2014).
61. J. S. Tsai, K. Dehvari, W. C. Ho, K. Waki and J. Y. Chang, In Situ Microwave‐Assisted Fabrication of Hierarchically Arranged Metal Sulfide Counter Electrodes to Boost Stability and Efficiency of Quantum Dot‐Sensitized Solar Cells, Advanced Materials Interfaces 6 (5), 1801745 (2019).
62. H. Zhang, J. Tong, W. Fang, N. Qian and Q. Zhao, Efficient flexible counter electrode based on modified graphite paper and in situ grown copper sulfide for quantum dot sensitized solar cells, ACS Applied Energy Materials 1 (3), 1355-1363 (2018).
63. Y. Chen, Q. Qiu, D. Wang, Y. Lin, X. Zou and T. Xie, CuSe/CuxS as a composite counter electrode based on PN heterojunction for quantum dot sensitized solar cells, Journal of Power Sources 413, 68-76 (2019).
64. Z. Hu, R. Zhou, W. Sun, J. Zhang, C.-S. Lee and J. Xu, Synthesis of double-shelled copper chalcogenide hollow nanocages as efficient counter electrodes for quantum dot-sensitized solar cells, Materials Today Energy 5, 331-337 (2017).
65. H. Bai, T. Shen, S. Wang, B. Li, G. Cao and J. Tian, Controlled growth of Cu3Se2 nanosheets array counter electrode for quantum dots sensitized solar cell through ion exchange, Science China Materials 60 (7), 637-645 (2017).
66. H. Zhang, C. Wang, W. Peng, C. Yang and X. Zhong, Quantum dot sensitized solar cells with efficiency up to 8.7% based on heavily copper-deficient copper selenide counter electrode, Nano Energy 23, 60-69 (2016).
67. L. Du, W. Du, H. Ren, N. Wang, Z. Yao, X. Shi, B. Zhang, J. Zai and X. Qian, Honeycomb-like metallic nickel selenide nanosheet arrays as binder-free electrodes for high-performance hybrid asymmetric supercapacitors, Journal of Materials Chemistry A 5 (43), 22527-22535 (2017).
68. F. Liu, J. Zhu, L. Hu, B. Zhang, J. Yao, M. K. Nazeeruddin, M. Grätzel and S. Dai, Low-temperature, solution-deposited metal chalcogenide films as highly efficient counter electrodes for sensitized solar cells, Journal of Materials Chemistry A 3 (12), 6315-6323 (2015).
69. C. K. Kamaja, R. R. Devarapalli and M. V. Shelke, One‐Step Synthesis of a MoS2− CuS Composite with High Electrochemical Activity as an Effective Counter Electrode for CdS/CdSe Sensitized Solar Cells, ChemElectroChem 4 (8), 1984-1989 (2017).
70. S. Wang, T. Shen, H. Bai, B. Li and J. Tian, Cu3Se2 nanostructure as a counter electrode for high efficiency quantum dot-sensitized solar cells, Journal of Materials Chemistry C 4 (34), 8020-8026 (2016).
71. Y. Chen, D. Wang, Y. Lin, X. Zou and T. Xie, In suit growth of CuSe nanoparticles on MXene (Ti3C2) nanosheets as an efficient counter electrode for quantum dot-sensitized solar cells, Electrochimica Acta 316, 248-256 (2019).
72. C. D. Sunesh, C. V. Gopi, M. P. A. Muthalif, H.-J. Kim and Y. Choe, Improving the efficiency of quantum-dot-sensitized solar cells by optimizing the growth time of the CuS counter electrode, Applied Surface Science 416, 446-453 (2017).
73. H. Pathan, J. Desai and C. Lokhande, Modified chemical deposition and physico-chemical properties of copper sulphide (Cu2S) thin films, Applied Surface Science 202 (1-2), 47-56 (2002).
74. V. Dusastre, Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. (World Scientific, 2010).
75. C. Clavero, Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices, Nature Photonics 8 (2), 95-103 (2014).
76. V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross and N. M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nature materials 6 (3), 241-247 (2007).
77. K. Ai, B. Zhang and L. Lu, Europium‐based fluorescence nanoparticle sensor for rapid and ultrasensitive detection of an anthrax biomarker, Angewandte Chemie 121 (2), 310-314 (2009).
78. I. Kim, K. Woo, Z. Zhong, P. Ko, Y. Jang, M. Jung, J. Jo, S. Kwon, S.-H. Lee and S. Lee, A photonic sintering derived Ag flake/nanoparticle-based highly sensitive stretchable strain sensor for human motion monitoring, Nanoscale 10 (17), 7890-7897 (2018).
79. B. D. Anderson and J. B. Tracy, Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange, Nanoscale 6 (21), 12195-12216 (2014).
80. Z. Erdélyi and D. Beke, On the “rationalisation” of Fick’s first law, Scripta materialia 49 (6), 613-617 (2003).
81. A.-A. El Mel, R. Nakamura and C. Bittencourt, The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes, Beilstein journal of nanotechnology 6 (1), 1348-1361 (2015).
82. A. Putnis, Mineral replacement reactions: from macroscopic observations to microscopic mechanisms, Mineralogical Magazine 66 (5), 689-708 (2002).
83. Z. Sun, Y. Yamauchi, F. Araoka, Y. S. Kim, J. Bergueiro, Y. Ishida, Y. Ebina, T. Sasaki, T. Hikima and T. Aida, An Anisotropic Hydrogel Actuator Enabling Earthworm‐Like Directed Peristaltic Crawling, Angewandte Chemie International Edition 57 (48), 15772-15776 (2018).
84. E. Groeneveld, L. Witteman, M. Lefferts, X. Ke, S. Bals, G. Van Tendeloo and C. de Mello Donega, Tailoring ZnSe–CdSe colloidal quantum dots via cation exchange: from core/shell to alloy nanocrystals, ACS nano 7 (9), 7913-7930 (2013).
85. L. Mu, C. Feng and H. He, Topological research on lattice energies for inorganic compounds, MATCH Commun. Math. Comput. Chem 56, 97-111 (2006).
86. G. D. Moon, S. Ko, Y. Xia and U. Jeong, Chemical transformations in ultrathin chalcogenide nanowires, Acs Nano 4 (4), 2307-2319 (2010).
87. R. G. Parr and R. G. Pearson, Absolute hardness: companion parameter to absolute electronegativity, Journal of the American chemical society 105 (26), 7512-7516 (1983).
88. D. H. Son, S. M. Hughes, Y. Yin and A. P. Alivisatos, Cation exchange reactions in ionic nanocrystals, science 306 (5698), 1009-1012 (2004).
89. W. Van Der Stam, A. C. Berends, F. T. Rabouw, T. Willhammar, X. Ke, J. D. Meeldijk, S. Bals and C. de Mello Donega, Luminescent CuInS2 Quantum Dots by Partial Cation Exchange in Cu2–x S Nanocrystals, Chemistry of Materials 27 (2), 621-628 (2015).
90. Z. Fan, L.-C. Lin, W. Buijs, T. J. Vlugt and M. A. Van Huis, Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands, Nature communications 7 (1), 1-8 (2016).
91. J. Park, H. Zheng, Y.-w. Jun and A. P. Alivisatos, Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles, Journal of the American Chemical Society 131 (39), 13943-13945 (2009).
92. J. Deng, L. Li, Y. Gou, J. Fang, R. Feng, Y. Lei, X. Song and Z. Yang, CdS-derived CdS1− xSex nanocrystals within TiO2 films for quantum dot-sensitized solar cells prepared through hydrothermal anion exchange reaction, Electrochimica Acta 356, 136845 (2020).
93. D. Ghosh, A. Ghosh, M. Y. Ali and S. Bhattacharyya, Photoactive core–shell nanorods as bifunctional electrodes for boosting the performance of quantum dot sensitized solar cells and photoelectrochemical cells, Chemistry of Materials 30 (17), 6071-6081 (2018).
94. Z. Pan, F. Cao, X. Hu and X. Ji, A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors, Journal of Materials Chemistry A 7 (15), 8984-8992 (2019).
95. G. Cho, Y. Park, Y.-K. Hong and D.-H. Ha, Ion exchange: an advanced synthetic method for complex nanoparticles, Nano convergence 6 (1), 1-17 (2019).
96. F. Han, W. C. Li, D. Li and A. H. Lu, In situ electrochemical generation of mesostructured Cu2S/C composite for enhanced lithium storage: mechanism and material properties, ChemElectroChem 1 (4), 733-740 (2014).
97. Y. Zhang, C. Hu, C. Zheng, Y. Xi and B. Wan, Synthesis and Thermoelectric Property of Cu2− x Se Nanowires, The Journal of Physical Chemistry C 114 (35), 14849-14853 (2010).
98. H. Li, R. Brescia, M. Povia, M. Prato, G. Bertoni, L. Manna and I. Moreels, Synthesis of uniform disk-shaped copper telluride nanocrystals and cation exchange to cadmium telluride quantum disks with stable red emission, Journal of the American Chemical Society 135 (33), 12270-12278 (2013).
99. Y. Xie, A. Riedinger, M. Prato, A. Casu, A. Genovese, P. Guardia, S. Sottini, C. Sangregorio, K. Miszta and S. Ghosh, Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions, Journal of the American Chemical Society 135 (46), 17630-17637 (2013).
100. I. Hwang and K. Yong, Counter Electrodes for Quantum‐Dot‐Sensitized Solar Cells, ChemElectroChem 2 (5), 634-653 (2015).
101. J. Tian, R. Gao, Q. Zhang, S. Zhang, Y. Li, J. Lan, X. Qu and G. Cao, Enhanced performance of CdS/CdSe quantum dot cosensitized solar cells via homogeneous distribution of quantum dots in TiO2 film, The Journal of Physical Chemistry C 116 (35), 18655-18662 (2012).
102. J. G. Radich, R. Dwyer and P. V. Kamat, Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells. Overcoming the redox limitations of S2–/Sn2–at the counter electrode, The Journal of Physical Chemistry Letters 2 (19), 2453-2460 (2011).
103. K. Meng, G. Chen and K. R. Thampi, Metal chalcogenides as counter electrode materials in quantum dot sensitized solar cells: a perspective, Journal of Materials Chemistry A 3 (46), 23074-23089 (2015).
104. J. R. Macdonald, Impedance spectroscopy. (Wiley, New York, 1987).
105. F. Gong, H. Wang, X. Xu, G. Zhou and Z.-S. Wang, In situ growth of Co0. 85Se and Ni0. 85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells, Journal of the American Chemical Society 134 (26), 10953-10958 (2012).
106. A. Hauch and A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells, Electrochimica acta 46 (22), 3457-3466 (2001).
107. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart and J. L. Dempsey, A practical beginner’s guide to cyclic voltammetry, Journal of chemical education 95 (2), 197-206 (2018).
108. F. Bo, C. Zhang, C. Wang, S. Xu, Z. Wang and Y. Cui, From red selenium to cuprous selenide: a novel and facile route to a high performance metal selenide cathode for sensitized solar cells, Journal of Materials Chemistry A 2 (35), 14585-14592 (2014).
109. G. Hodes, J. Manassen and D. Cahen, Electrocatalytic electrodes for the polysulfide redox system, Journal of the Electrochemical Society 127 (3), 544 (1980).

無法下載圖示 全文公開日期 2026/08/24 (校內網路)
全文公開日期 2026/08/24 (校外網路)
全文公開日期 2026/08/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE