簡易檢索 / 詳目顯示

研究生: 劉昭毅
Chao-Yi Liu
論文名稱: 以平行和非平行立體影像為基礎的3D氣壓手臂
Parallel and Non-Parallel Stereo Vision Based 3D Pneumatic Arms
指導教授: 王英才
Ying-Tsai Wang
口試委員: 莊福盛
none
江茂雄
Mao-Hsiung Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 83
中文關鍵詞: 立體影像視覺3D氣壓手臂自組織滑動模糊控制器
外文關鍵詞: stereo vision, 3D pneumatic arm, self-organizing sliding-mode fuzzy controller
相關次數: 點閱:278下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文中,主要是利用平行與非平行兩種不同的立體影像視覺進行3D氣壓手臂伺服控制。利用撓性氣壓缸與旋轉氣壓缸組成的3D氣壓手臂,配合兩台CCD以不同的立體影像視覺,經由3D空間的座標轉換,再結合自組織滑動模糊控制器,進行手臂末端特徵物的軌跡追蹤控制。經由與Encoder比較,分析立體影像的量測誤差,以及各項軌跡追蹤實驗的結果,來評估這兩種影像視覺的特性與差異性,及討論其可行性。


This thesis is mainly to develop parallel and non-parallel stereo vision based 3D pneumatic arms. The 3D pneumatic arm is setup by pneumatic muscle and rotational actuators. The parallelly and vertically installed two CCD Cameras can provide the stereo vision. Then, via the stereo triangulation and coordinate transformation, it can capture the 3D location of pneumatic arm. The self-organizing sliding-mode fuzzy controller is designed for the arm’s trajectory tracking control. Based on the encoder’s measurement, it can justify the measurement error of parallel and non-parallel stereo visions. Then, the variety trajectory tracking experiments are implemented to verify the feasibility of vision-based 3D pneumatic arms.

摘要I AbstractII 致謝III 目錄IV 圖目錄VII 表目錄X 第1章 緒論1 1.1 研究動機及目的1 1.2 文獻回顧3 1.3 論文大綱5 第2章 實驗系統與架構7 2.1 機台架構7 2.2 實驗設備9 2.3 PCI-1710介面卡12 2.4 解碼電路13 第3章 影像視覺之測量技術15 3.1 影像系統15 3.1.1 影像處理流程15 3.1.2 應用軟體介紹17 3.1.3 特徵物追蹤及影像校正19 3.1.4 立體影像座標系統定義22 3.2 平行影像與空間之關係23 3.3 垂直影像與空間之關係25 第4章 量測誤差分析37 4.1 靜態量測誤差分析37 4.2 動態量測誤差分析40 4.3 比較分析42 第5章 控制架構與理論44 5.1 系統控制架構44 5.2 座標轉換45 5.3 自組織滑動模糊控制器47 5.3.1 滑動模式分析48 5.3.1.1 滑動模式48 5.3.1.2 迫近條件49 5.3.1.3 滑動條件50 5.3.2 自組織模糊理論分析50 5.3.2.1 自組織學習機構51 5.3.2.2 模糊化55 5.3.2.3 解模糊化57 第6章 實驗結果與分析58 6.1 實驗項目58 6.2 實驗參數設定59 6.3 實驗結果與分析59 6.3.1 平行影像60 6.3.2 垂直影像68 6.3.3 平行影像與垂直影像之比較74 第7章 結論77 參考文獻80 作者簡介83

[1]Carducci, G., Foglia, M., Gentile, A., Giannoccaro, N.I.and Messina, A., “Pneumatic robotic arm controlled by on-off valves for automatic harvesting based on vision localization,” IEEE International Conference on Industrial Technology, V.2, pp.1017-1022, 2004.
[2]Tondu, B., Ippolito, S., Guiochet, J. and Daidie, A., “A seven-degree-of- freedom robot-arm driven by pneumatic artificial muscles for humanoid robots,” The International Journal of Robotics Research, V.24, N.4, pp.257-274, 2005.
[3]Yamamoto, K., Ishii, M., Noborisaka, H. and Hyodo, K., “Stand alone wearable power assisting suit - sensing and control systems,” IEEE Proceeding of International Workshop on Robot and Human Interactive Communication, N.20-22, pp.661-666, 2004.
[4]Fan, L., Yao, X., Qi, H., Jiang, L. and Wang, W., “An automatic control system for eod robot based on binocular vision position,” IEEE International Conference on Robotics and Biomimetics, N.15-18, pp.914-919, Dec. 2007.
[5]Nakabo Y., Ishi I. and Ishikawa M., “3D tracking using two high-speed vision systems,” IEEE/RSJ International Conference on Intelligent Robots and System, V.1, pp.360 - 365, 2002.
[6]Jia, Q., Chen, G., Sun, H., Hong, L. and Sun, X., “The study of an improved algorithm for binocular stereo vision based on intra-vehicular robot system,” IEEE International Conference on Industrial Electronics and Applications, N.3-5, pp. 1246-1251, 2008.
[7]Marr, D. and Poggio, T., “Cooperative computation of stereo disparity,” Science, V. 194, No. 4262, pp. 283-287, 1976.
[8]J. Hwang, Y. Ooi, and S. Ozawa, “A visual feedback control system for tracking and zooming a target,” Proc. of the Int. Conf. on Ind. Elec. Control , Instrum. and Autom., V.2, pp.740-745, 1992.
[9]Volpe, R., Litwin, T. and Matthies, L., “Mobile robot localization by remote viewing of a colored cylinder,” IEEE/RSJ International Conference, V.251, pp.257-263, 1995.
[10]Han, S., Seo, W.H., Yoon, K.S. and Lee, M., “Real-time control of an industrial robot using image-based visual servoing,” IEEE/RSJ International Conference on Intelligent Robots and System , V.3, pp1762-1767, 1999.
[11]Pachidis, T.P. and Lygouras, J.N., “Pseudostereo-vision system: a monocular stereo-vision system as a sensor for real-time robot applications,” IEEE Transactions on Instrumentation and Measurement, V.56, pp. 2547-2560, 2007.
[12]Lee, H., Cho, H. and Kim, M., “A new 3D sensor system for mobile robots based on moire and stereo vision technique,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1384-1389, 2006
[13]Hager, G.D., Wen-Chung Chang and Morse, A.S., “Robot hand-eye coordination based on stereo vision,” Control Systems Magazine, V.15, pp.30-39, 1995.
[14]Choi, T.Y., Choi, B.S. and Lee, J.J., “Manipulator operation using joint stiffness adjusting by pneumatic muscles,” Conference on Human System Interaction, pp.434-439, 2008.
[15]Kawashima, K., Sasaki, T., Ohkubo, A., N., Miyata T. and Kagawa, T. “Application of robots arm using fiber knitted type pneumatic artificial rubber muscles,” IEEE, Robotics and Automation, V.5, N.5, pp.4397-4942, 2004.
[16]Takuma T., Nakajima S., Hosoda K. and Asada M., “Design of self-contained biped walker with pneumatic actuators,” SICE Annual Conference, V.3, pp2520-2524, 2004.
[17]Lilly, J.H., “Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, V.11, No.3, pp.333-339, 2003.
[18]Lee, C.S.G. and Ziegler, M., “Geometric approach in solving inverse kinematics of PUMA robots,” IEEE Transactions on Aerospace and Electronic Systems, V. 20, Issue 6, pp.695-706, 1984.
[19]Kung, Y., Tseng, K., Chen, C., Hau-Zen Sze and An-Peng Wang, “FPGA-implementation of inverse kinematics and servo controller for robot manipulator,” IEEE International Conference on Robotics and Biomimetics, N.17-20, pp. 1163-1168, 2006.
[20]Takosoglu, J.E., Dindorf, R.F. and Laski, P.A., “Rapid prototyping of fuzzy controller pneumatic servo-system,” International Journal of Advanced Manufacturing Technology, V.40, N.3-4, pp.349-361, 2009.
[21]Wang, Y.T., Wong, R.H. Yu, C.H and Huang, W.C., “Fuzzy control: 2D pneumatic muscle actuator’s arm, ”The Journal of the Institute of Measurement and Control, V.42, pp24-27, 2009.
[22]Procyk, T. J. and Mamdani, E.H., “A linguistic self-organizing process controller,” Automatica, V.15, pp.15-30, 1979.
[23]Chang, M., Yen, P. and Yuan, T., “Angle control of a one-dimension pneumatic muscle arm using self-organizing fuzzy control,” IEEE International Conference on Man. and Cybernetics System, V.5, N 8-11, pp.3834-3838, 2006.
[24]Chang, M. and Yuan, T., “Experimental implementations of adaptive self-organizing fuzzy slide mode control to a 3-DOF rehabilitation robot,” International Conference on Innovative Computing Information and Control, N.18-20, pp.503-503, 2008.
[25]Subashini Elangovan and Woo, P., “Adaptive fuzzy sliding control for a three-link passive robotic manipulator,” American Control Conference, V.6, pp.5274-5279, 2004.
[26]侯人豪, “解耦合自組織模糊滑動平面調變控制於氣壓─壓電混合力量控制之研究”, 國立台灣科技大學自動化及控制研究所碩士學位論文, 2003.
[27]葉永培, “解耦合自組織模糊滑動平面控制應用於閥控液壓缸系統變排量節能控制與伺服控制之整合控制研究”, 國立台灣科技大學自動化及控制研究所碩士學位論文, 2003.
[28]羅建桓, “以影像視覺為基礎之3D氣壓手臂控制系統”, 國立台灣科技大學機械工程系碩士學位論文, 2007.
[29]Qu, S and Wang, Y., “Sliding mode control for a class of uncertain input-delay systems,” World Congress on Intelligent Control and Automation, V.2, pp. 1184-1186, 2004.

QR CODE