簡易檢索 / 詳目顯示

研究生: 陳威安
Weiliem Abubakar
論文名稱: 以模型為基礎分析超級電容器堆充放電、溫度及老化動態不均衡效應之交互影響
Model-based Analysis of the Interactions among the Charge Imbalance and the Nonhomogeneities in the Thermal and Aging Dynamics in an Ultracapacitor Stack
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 姜嘉瑞
Chia-Jui Chiang
楊景龍
Jing-Long Yang
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 102
中文關鍵詞: 超級電容老化超級電容器堆不均衡充放電
外文關鍵詞: ultracapacitor, ultracapacitor stack, ageing, unbalanced charging
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

In electric vehicles, there is electrical energy storage such as battery and ultracapacitor. For ultracapacitor, those which are connected in series will be placed in one stack for the sake of achieving a targeting power. The non-homogeneity in the thermal conditions of all the cells may result in differences in the ageing behaviors among the cells, which in turn causes unbalanced charge/discharge characteristics. To comprehend further on, it is developed ultracapacitors’ ageing model to simulate in different ambient temperature between ultracapacitors stack’s interior and exterior and unbalanced charged discharge. Ultracapacitors which are conneted in series have same specification and same ambient temperature at outside, risk of unbalanced charging can still occur.The reason is the effect of internal volume’s temperature which are placed among ultracapacitors and different heat transfer convection between interior and outside. The high ultracapacitors’ temperature which are affected by the high charging current input also affect internal volume’s temperature. The purpose of applying PI controller in an ultracapacitor stack is to control an ultracapacitor stack’s voltage. While Balancing Cell help an ultracapacitor stack to balance voltage and make voltage kept in range between 1.35-2.7 Volt. The combination between PI controller and balancing cell helps an ultracapacitor stack perform longer.


In electric vehicles, there is electrical energy storage such as battery and ultracapacitor. For ultracapacitor, those which are connected in series will be placed in one stack for the sake of achieving a targeting power. The non-homogeneity in the thermal conditions of all the cells may result in differences in the ageing behaviors among the cells, which in turn causes unbalanced charge/discharge characteristics. To comprehend further on, it is developed ultracapacitors’ ageing model to simulate in different ambient temperature between ultracapacitors stack’s interior and exterior and unbalanced charged discharge. Ultracapacitors which are conneted in series have same specification and same ambient temperature at outside, risk of unbalanced charging can still occur.The reason is the effect of internal volume’s temperature which are placed among ultracapacitors and different heat transfer convection between interior and outside. The high ultracapacitors’ temperature which are affected by the high charging current input also affect internal volume’s temperature. The purpose of applying PI controller in an ultracapacitor stack is to control an ultracapacitor stack’s voltage. While Balancing Cell help an ultracapacitor stack to balance voltage and make voltage kept in range between 1.35-2.7 Volt. The combination between PI controller and balancing cell helps an ultracapacitor stack perform longer.

Acknowledgements i Abstract ii Contents iv List of Figures ix List of Tables x 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Methodologies 4 2.1 Ultracapacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Principle of Ultracapacitor . . . . . . . . . . . . . . . . . . . 6 2.2 Unbalanced Charge and Discharge . . . . . . . . . . . . . . . . . . . 7 2.2.1 State of Charge(SOC)Unbalanced . . . . . . . . . . . . . . . 7 2.2.2 Total Capacity Differences . . . . . . . . . . . . . . . . . . . 7 2.2.3 Impedance Differences . . . . . . . . . . . . . . . . . . . . . 8 2.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Software Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.1 Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.2 Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Ultracapacitor Cell Model and Stack Model 11 3.1 A Singel Cell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 Equivalent Circuit Model . . . . . . . . . . . . . . . . . . . . 11 3.1.2 Thermal Model . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.3 Ageing Model . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.4 Extended Model . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 A Ultracapacitor Stack . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 PID Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Charge-Balancing Circuits . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.1 Passive Resistors . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.2 Switched Resistors . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.3 DC/DC Converters . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.4 Zener Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Ultracapacitor Specification . . . . . . . . . . . . . . . . . . . . . . 26 4 Results and Discussion 27 4.1 Single Cell Model Validation . . . . . . . . . . . . . . . . . . . . . . 27 4.1.1 Single Cycle 7A . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.2 NYCC cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Simulation Results of Ultracapacitors Stacks . . . . . . . . . . . . . 31 4.2.1 Two Ultracapacitors Stack with Open Loop Current Input . 31 4.2.2 Four Ultracapacitors Stack with Open Loop Current Input . 42 4.2.3 Nine Ultracapacitors Stack with Open Loop Current Input . 53 4.2.4 Nine Ultracapacitors Stack with Controlled Terminal Voltage 67 4.2.5 Nine Ultracapacitors Stack with Controlled Terminal Voltage and Balancing Cell . . . . . . . . . . . . . . . . . . . . . 75 5 Conclusion and Future Works 84 Appendix A { List of Symbols 85 Appendix B { List of Abbreviations 87 BIBLIOGRAPHY 88

[1] Yang,Jing-Long, Dynamic Modelling of Advanced Electric Energy Generators
and Electric Energy Storage Devices, National Taiwan University of Science
and Technology, Taipei, 2013.
[2] Huang,Wei-Rong, Modelling of The Nonlinear Aging Behaviour of Ultracapac-
itors, National Taiwan University of Science and Technology, Taipei, 2014.
[3] Yevgen Barsukov, Battery Cell Balancing:What to Balance and How, Texas
Instruments, Texas, 2009.
[4] Energy Storage, https : ==en:wikipedia:org=wiki=Energystorage.
[5] International Electrotechnical Commission, Electrochemical Energy Storage,
International Electrotechnical Commission,Switzerland,2011.
[6] Capacitor, https : ==en:wikipedia:org=wiki=Capacitor.
[7] A.G. Pandolfo and A.F.Hollenkamp, Carbon Properties and their role in su-
percapacitors, Journal Power of Sources, vol.157, pp.11-27,April 2006.
[8] Oliver Bohlen, Julia Kowal, Dirk Uwe Sauer, Ageing Behaviour of Electrochem-
ical Double Layer Capacitors PartII. Lifetime Simulation Model for Dynamic
Applications, Journal of Power Sources, vol 173,626-632,2007.
[9] Julia Schiffer,Dirk Linzen, Dirk Uwe Sauer, Heat Generation in Double Layer
Capacitor, Journal of Power Sources, vol.160, pp.765-772,2006.
[10] D.Linzen, Impedance-based loss calculation and thermal modelling of electro-
chemical energy storage devices for design considerations of automotive power
systems, Ph.D. Thesis, RWTH Aachen University, Institute for Power Electronics
and Electrical Drives ISEA,2006.
[11] Dirk Linzen, Marc Thele, Julia Schiffer, Holger Blanke, Dirk Uwe Sauer,
Impedence-based Thermal Modeling for Lithium-Ion, NiMH batteries and
Double-Layer Capacitors, EVS,Internat. Electric Vehicle Symp., 21, Monaco,
2005.
[12] R.E.Sonntag, C.Borgnakle, and G.J.V.Wylen, Fundamentals of Thermody-
namics, SIXTH EDITION, 2009.
[13] Oliver Bohlen, Julia Kowal, Dirk Uwe Sauer, Ageing Behaviour of Elec-
trochemical Double Layer Capacitors PartI. Experimental Study and Ageing
Model, Journal of Power Sources, vol 172,468-475,2007.
[14] S.L.J.S.Lai and M.F.Rose, High Energy Density Double-layer Capacitors for
Energy Storage Applications, IEEE Aes Magazine, vol.77, pp 14-19, 1992.
[15] E.Barsoukov and J.R.Macdonald, Impedance Spectroscopy Theory, Experi-
ment and Appilications, Wiley-Interscience.
[16] D. Andrea, M. Meilera, K. Steinera, Ch. Wimmera, T. Soczka-Gutha, D.U.
Sauerb, Characterization of high-power lithium-ion batteries by electrochem-
ical impedance spectroscopy. I. Experimental investigation, Journal of Power
Sources, vol 196,5334-5341,2011.
[17] Chao Chu Nan,Zhang Jian Qing, Introduction of Electrochemical Impedance,
Science Press,2002.
[18] D.K.S. Buller, E.Karden, and R.W.D. Doncker, Modeling The Dynamic Be-
havior of Supercapacitors Using Impedance Sprectroscopy, IEEE Transactions
on Industry Applications, vol.38, pp.86-93,2003.
[19] Li Yi Da, Design and Simulation of Control System, Page 1-1,1-2. Quanhua
Books Co., Ltd.2003.
[20] Zhang Zhi Xing, Application and Design Matlab Program, Page 1-2,1-5.Qing
Wei Technology Co., Ltd.
[21] Jianjun Niu, Brian E. Conway, Wendy G. Pell, Comparative studies of self-
discharge by potential decay and
oat-current measurements at C double-layer
capacitor and battery electrodes, Journal of Power Sources, vol.135, pp.332343,
2004.
[22] B. W. Ricketts and C. Ton-that, Self-discharge of carbon-based supercapaci-
tors with organic electrolytes, Journal of Power Sources, vol.89, issue.1, pp.64-
69, 2000.
[23] Naixing Yang, Xiongwen Zhang, BinBin Shang, Guojun Li, Unbalanced
discharging and aging due to temperature di erences among the cells in a
lithium-ion battery pack with parallel combination, Journal of Power Sources,
vol.306,pp.733-741, 2016.
[24] Rajeswari Chandrasekaran, Godfrey Sikha, Branko N.Povpov, Capacity fade
analysis of a battery/super capacitor hybrid and a battery under pulse loads full
cell studies, Journal of Applied Electrochemistry, vol.35, pp.10051013, 2005.
[25] Ramaraja P. Ramasamy, Ralph E. White, Branko N. Popov, Calendar life
performance of pouch lithium-ion cells, Journal of Power Sources, vol.141,
pp.298306, 2005.
[26] Evgenij Barsoukov, Impedance Spectroscopy Theory,Experiment, and Appli-
cations, A John Wiley & Sons, Inc., Publication,Texas,2005.
[27] Rengui Lu, Chunbo Zhu, Likun Tian, and Qi Wang, Super-Capacitor Stacks
Management System With Dynamic Equalization Techniques, IEEE TRANSACTIONS
ON MAGNETICS, vol. 43, no. 1, 2007.
[28] R. Bonert, Ultracapacitors as sole energy storage device in hybrid electric cars,
Proc. Power Electron. Transport, pp.97-101,1997.
[29] I.D.Oltean, A.M.Matoi, E.Helerea, A Supercapacitor Stack - Design and
Characteristics, 12th International Conference on Optimation of Electrical and
Electronic Equipment, OPTIM, pp.214-219,2010.
[30] Meng Cheng, Saif Sabah Sami, JianzhongWu, Bene ts of using virtual energy
storage system for power system frequency response, Journal of Applied Energy,
vol.194, pp.376-385, 2017.
[31] https : ==en:wikipedia:org=wiki=Electricvehicle, Electric Vehicle.
[32] Katie Fehrenbacher,A wave of electric vehicle charging investment is
here,Green Biz, June,1 2018. https : ==www:greenbiz:com=article=wave −
electric − vehicle − charging − investment − here.
[33] Cohen, M. and Smith, R., Here and now: Ultracapacitors are a standard
option, Proc. EVS19, pp.812-819.2002.
[34] Burke, A. and Miller, M., Comparisons ultracapacitors and advanced batteries
for pulse power in vehicle applications: Performance, Life, and Cost, EVS19,
Korea, October, pp.19-23.2002.
[35] A.Burke, The present and projected performance and cost of doublelayer and
pseudo-capacitive ultracapacitors for hybrid vehicle applications, IEEE Veh.
Power Propulsion Conf, pp.356-367,2005.
[36] Jorg Folchert, Dietrich Naunin, Dimitri Tseronis, Ultra Capacitor Storages
for Automotive Applications, Proc. EVS19, pp.867-875,2002.
[37] R.A.Sutula, United States department of energy eciency and renewable en-
ergy oce of transportation technologies, highlights report for the vehicle high-
power energy storage program, 2001, Annual Progress Report, 2002.
[38] Noshin Omar, Hamid Gualos,Justin Salminen,Grietus Mulder,Ahmadou
Samba,Yousef Firouz,Mohamed Abdel Monem,Peter Van den Bossche,Joeri
Van Mierlo, Electrical double-layer capacitors: evaluation of ageing phenomena
during cycle life testing, Journal of Application Electrochemical 44, pp.509-522,
2014.
[39] Markus Lelie, Thomas Braun, Marcus Knips, Hannes Nordmann, Florian
Ringbeck, Hendrik Zappen, and Dirk Uwe Sauer. Battery Management Sys-
tem Hardware Concepts: An Overview, Journal of Applied Science MDPI
Vol.8(4),pp.534-560, 2018.
[40] Hybrid Electric Vehicle, https : ==en:wikipedia:org=wiki=Hybridelectricvehicle.
[41] Electric Motorcycles and Scooters, https :
==en:wikipedia:org=wiki=Electricmotorcyclesandscooters.
[42] Yasha Parvini, Jason B.Siegel, Anna G. Stefanopoulou, and Ardalan Vahidini,
Supercapacitor Electrical and Thermal Modelling, Identi cation, and Valida-
tion for a Wide Range of Temperature and Power Applications, IEEE Transactions
on Industrial Electronics Vol 63(3), pp.1574-1585, 2016.
[43] T. Markel, A. Brooker, T. Hendricks, V. Johnson, K. Kelly,B. Kramer, M.
OKeefe, S. Sprik, K. Wipke, ADVISOR: a systems analysis tool for advanced
vehicle modeling, Journal of Power Sources, vol.110, pp.255-266,2002.
[44] R.Kotz, P.W. Ruch, D. Cericola, Aging and failure mode of electrochemical
double layer capacitors during accelerated constant load tests, Journal of Power
Sources,vol.195, pp.923-928, 2010.
[45] Dirk Linzen. Stephan Buller. Eckhard Karden. Rik W. De Doncker, Analysis
and Evaluation of Charge-Balancing Circuits on Performance, Reliability, and
Lifetime of Supercapacitor Systems, IEEE Transactions on Industry Applications,
vol.41, pp.1135-1141, 2005.
[46] Monzer Al Sakka, Hamid Gualous, Joeri Van Mierlo, Hasan Culcu, Ther-
mal Modelling and Heat Management of Supercapacitor Modules for Vehicle
Operation, Journal of Power Sources, vol.194, page 581-587, 2009.
[47] Christopher Gunawan, Vivien Suphandani Dhanali, Nana Paradigma, Vita
Lystianingrum, Numerical Study of Flow Characteristic and Heat Transfer on
Ultracapacitor Stack with Reynolds Number Variations, AIP Conference Proceedings,
vol.1983, page 020038-1 - 020038-5, 2018.
[48] Sihwan Lee, Mai Nogami, Satomi Yamaguchi, Takashi Kurabuchi, Noburo
Ohira, Evaluation of Heat Transfer Coecient in Various Air-Conditioning
Modes by Using Thermal Manikin, Proceedings of BS2013: 13th Conference of
International Bulding Performance Simulation Association, Chambery, France,
page 2289-2296, 2013.
[49] Julia Schiffer, Dirk Linzen, Dirk Uwe Sauer, Heat Generation in Double Layer
Capacitors, Journal of Power Sources, vol.160, page 765-772, 2006.
[50] Hamid Gualous, Hasna Louahlia-Gualous, Rolland Gallay, Abdellatif Miraoui,
Supercapacitor Thermal Modelling and Characterization in Transient State for Industrial Applications, IEEE Transactions on Industry Applications,
vol.45, page 1035-1044,2009.
[51] Yansong Li, SihanWang, Meina Zheng, Jun Liu, Thermal Behaviour Analysis
of Stacked-type Supercapacitors with Di erent Cell Structures, CSEE Journal
of Power and Energy Systems, vol.4, page 112-120, 2018.
[52] J.Li, G.Wang, L.Wu, X.Li, Failure Prediction of Ultracapacitor Stack Using
Fuzzing Inference System, Engineering Review, vol.35, page 103-111, 2015.
[53] Japanese Mode 10-15, https : ==www:dieselnet:com=standards=cycles=jp10−
15mode:php.
[54] T,Markel, A.Brooker, T.Hendricks, V. Johnson, K.Belly, B.Kramer,
M.O’Keefe, S.Sprink, and K.Wipke. Advisor: A System Analysis Tool for Ad-
vanced Vehicle Modelling, Journal of Power Sources, vol.110, pp.255-266, 2002.
[55] ADVISOR, www:mathworks:com=help=slcheck=ref=modeladvisor:format−
template − class:html.
[56] Huang,Ke-Jun, UKF-based Estimation of the Ultracapacitor State of Charge
(SOC),Temperature and Remaining Usefule Life(RUL), National Taiwan University
of Science and Technology, Taipei, 2016.
[57] Feedback Control, https : ==en:wikibooks:org=wiki=ControlSystems=F eedback−
Loops.
[58] PID Controller, https : ==en:wikipedia:org=wiki=P IDController.
[59] Definition of Specific Heat Capacity, www:thoughtco:com=definition−of −
specific − heat − capacity − 605672.
[60] Density of Air, https : ==en:wikipedia:org=wiki=Densityofair.
[61] Definition of Specific Heat Capacity, =www:engineeringtoolbox:com=air −
specific − heat − capacity − d705:html.
[62] T.Group, TPLS-100F-Electric Double Layyer Capacitor
(EDLC):PowerBurstR Ultracapacitor
[63] Determining the State of Health of Batteries Quickly and Precisely https :
==www:rutronik:com=article=detail=News=determining−the−state−of −
health − of − batteries − quickly − and − precisely=
[64] Hyun-jun Lee, Joung-hu Park, Jonghoon Kim. Comparative analysis of the
SOH estimation based on various resistance parameters for LiCoO2 cells, IEEE
Transportation Electrification Conference and Expo, Asia - Pacific (ITEC),
pp.788-792,2016.

無法下載圖示 全文公開日期 2024/08/28 (校內網路)
全文公開日期 2024/08/28 (校外網路)
全文公開日期 2024/08/28 (國家圖書館:臺灣博碩士論文系統)
QR CODE