簡易檢索 / 詳目顯示

研究生: 陳威鈞
WEI-CHUN CHEN
論文名稱: 統一派工下多個租賃設備之最佳預防保養決策週期
Optimal Decision Cycle of Preventive Maintenance for Multiple Leased Devices under Joint Dispatch
指導教授: 葉瑞徽
Ruey-Huei Yeh
口試委員: 葉瑞徽
Ruey-Huei Yeh
張文亮
Wen-Liang Chang
林義貴
Yi-Kuei Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 53
中文關鍵詞: 多租賃設備決策週期統一派工年齡回溯法分別派工週期性預防保養
外文關鍵詞: Multiple leased devices, Decision cycle, Joint dispatch, Individual dispatch, Age reduction method, Periodical preventive maintenance
相關次數: 點閱:183下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於設備的租賃,實務上出租者與承租者會在設備租賃的契約中明訂雙方的權利與義務。一般來說,當設備在租期內失效時,出租者必須負責維修失效的設備至正常運作狀態。然而,設備失效的頻率會隨著年齡與使用率的增長而愈頻繁,使得出租者必須負擔的維修費用就愈多,因此通常會考慮在租賃期間執行預防保養以降低設備的失效次數。對於單一設備來說,最佳預防保養策略相較於多個設備更容易被安排。而在多個設備情況下,出租者如何規劃設備的預防保養是一個非常重要的課題。此外,在過去安排好多個設備的保養時程後,對於設備的派工皆採取「分別派工」的方式,分別派出多組員工對多個設備執行保養。但這種派工方式可能會造成許多成本的浪費。因此本論文提出兩種分群方式來節省期望總成本,(1)「統一派工」,意即多個設備在同時間皆須保養時,將該時間下所有設備分至同一群,統一派出一組員工執行多個設備的保養。(2)延長對設備進行決策的週期時間,使保養時間較相近的設備能於同時間執行保養,以便在「統一派工」下可分至同一群。在此情況下,本論文將以出租者的立場針對多個租賃設備於不同決策週期下進行「統一派工」預防保養,建構出多個設備於租賃期內之總維修成本模式,並尋求最佳決策週期使期望總成本最小。另外,進一步以數值範例分析探討設置成本與變動決策週期對設備預防保養之影響,最後比較租賃設備採取「統一派工」與「分別派工」預防保養策略對於期望總成本之差異。


    For the leased devices, the lessor usually signs a contract about leased devices with lessee to stipulate their rights and responsibilities. In general, any failure of a leased device within the lease period is rectified by a repair provided by the lessor. To reduce the number of failures of the device, additional preventive maintenance(PM) actions might be carried out during the lease period. For a single device, the optimal PM policy can be easily derived. However, when there are multiple devices in the lease contract, the PM scheme of leased devices is an important issue for the lessor. Moreover, it is used to adopt “individual dispatch” for multiple devices in the past, but this dispatch may bring a lot cost for lessor. Therefore, this paper proposes two methods of group for multiple devices. (1) “joint dispatch” means that when multiple devices are required to be maintained at the same time, a group of employees is sent out to perform the maintenance of multiple devices. (2) extending the cycle time for making decision on devices so that devices with similar maintenance scheme can perform maintenance at the same time. Under this situation, this paper takes lessor’s viewpoint to investigate the optimal decision cycle of PM for multiple leased devices under “joint dispatch”. In addition, the “joint dispatch” PM mathematical cost model under various decision cycle is constructed, Base on the model, the optimal group PM policy is derived such that the expected total maintenance cost is minimized. Furthermore, the impact of the setup cost and decision cycle on the optimal PM policy is illustrated through numerical examples.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第1章 緒論 1 1.1 研究背景與目的 1 1.2 研究範圍與論文架構 3 第2章 文獻探討 5 2.1 租賃設備 5 2.2 維修策略 6 2.3 預防保養 7 第3章 系統描述與成本模式 12 3.1. 符號定義與模式假設 12 3.2. 單一設備之成本模式 15 3.3. 多個設備之成本模式 18 3.3.1. 分別派工成本模式 18 3.3.2. 統一派工成本模式 20 第4章 最佳預防保養策略 22 4.1 預防保養策略 22 4.2 韋伯分配之最佳預防保養策略 25 第5章 數值分析 29 5.1 單一設備之預防保養 29 5.2 多設備之預防保養 30 5.3 變動設置成本 33 5.4 變動決策週期δ 36 第6章 結論 39 6.1 結論 39 6.2 未來研究方向 40 參考文獻 41

    [1] Barlow, R., and L. Hunter, “Optimum preventive maintenance policies,” Operations research, vol. 8, no. 1, pp. 90-100, 1960.
    [2] Chang, C. C., “Optimum preventive maintenance policies for systems subject to random working times, replacement, and minimal repair,” Computers & Industrial Engineering, vol. 67, no. 2, pp. 185-194, 2014.
    [3] Chang, W. L., and H. C. Lo, “Joint determination of lease period and preventive maintenance policy for leased equipment with residual value,” Computers & Industrial Engineering, vol. 61, no. 3, pp. 489-496, 2011.
    [4] Chen, M., and R. M. Feldman, “Optimal replacement policies with minimal repair and age-dependent costs,” European Journal of Operational Research, vol. 98, no. 1, pp. 75-84, 1997.
    [5] Cheng, C. Y., X. Zhao, M. Chen, and T. H. Sun, “A failure-rate-reduction periodic preventive maintenance model with delayed initial time in a finite time period,” Quality Technology & Quantitative Management, vol. 11, no. 3, pp. 245-254, 2014.
    [6] Chien, Y., C. Chang, and S. Sheu, “Optimal periodical time for preventive replacement based on a cumulative repair-cost limit and random lead time,” Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, vol. 223, no. 4, pp. 333-345, 2009.
    [7] Chun, Y. H., “Optimal number of periodic preventive maintenance operations under warranty,” Reliability Engineering & System Safety, vol. 37, no. 3, pp. 223-225, 1992.
    [8] Fishbein, B. K., L. S. Mcgarry, and P. S. Dillon, Leasing: a step toward producer responsibility: Inform, 2000.
    [9] Jaturonnatee, J., D. Murthy, and R. Boondiskulchok, “Optimal preventive maintenance of leased equipment with corrective minimal repairs,” European Journal of Operational Research, vol. 174, no. 1, pp. 201-215, 2006.
    [10] Jhang, J. P., "The optimal maintenance policy proportion for the repairable warranty equipment using decreasing-failure-rate-reduction method." pp. 977-980.
    [11] Jhang, J. P., and S. H. Sheu, “Opportunity-based age replacement policy with minimal repair,” Reliability Engineering & System Safety, vol. 64, no. 3, pp. 339-344, Jun, 1999.
    [12] Lie, C. H., and Y. H. Chun, “An algorithm for preventive maintenance policy,” IEEE Transactions on Reliability, vol. 35, no. 1, pp. 71-75, 1986.
    [13] Mabrouk, A. B., A. Chelbi, and M. Radhoui, “Optimal imperfect maintenance strategy for leased equipment,” International Journal of Production Economics, vol. 178, pp. 57-64, 2016.
    [14] Moghaddam, K. S., and J. S. Usher, “Preventive maintenance and replacement scheduling for repairable and maintainable systems using dynamic programming,” Computers & Industrial Engineering, vol. 60, no. 4, pp. 654-665, 2011.
    [15] Nakagawa, T., and M. Kowada, “Analysis of a system with minimal repair and its application to replacement policy,” European Journal of Operational Research, vol. 12, no. 2, pp. 176-182, 1983.
    [16] Park, D. H., G. M. Jung, and J. K. Yum, “Cost minimization for periodic maintenance policy of a system subject to slow degradation,” Reliability Engineering & System Safety, vol. 68, no. 2, pp. 105-112, 2000.
    [17] Park, K. S., “Optimal number of minimal repairs before replacement,” IEEE Transactions on Reliability, vol. 28, no. 2, pp. 137-140, 1979.
    [18] Pongpech, J., and D. Murthy, “Optimal periodic preventive maintenance policy for leased equipment,” Reliability Engineering & System Safety, vol. 91, no. 7, pp. 772-777, 2006.
    [19] Schutz, J., and N. Rezg, “Maintenance strategy for leased equipment,” Computers & Industrial Engineering, vol. 66, no. 3, pp. 593-600, 2013.
    [20] Seo, J., and D. Bai, “An optimal maintenance policy for a system under periodic overhaul,” Mathematical and Computer Modelling, vol. 39, no. 4-5, pp. 373-380, 2004.
    [21] Sheu, S. H., and W. S. Griffith, “Optimal age-replacement policy with age-dependent minimal-repair and random-leadtime,” IEEE Transactions on Reliability, vol. 50, no. 3, pp. 302-309, 2001.
    [22] Wang, H., “A survey of maintenance policies of deteriorating systems,” European journal of operational research, vol. 139, no. 3, pp. 469-489, 2002.
    [23] Yeh, R. H., and C. K. Chen, “Periodical preventive-maintenance contract for a leased facility with Weibull life-time,” Quality and Quantity, vol. 40, no. 2, pp. 303-313, 2006.
    [24] Yeh, R. H., and W. L. Chang, “Optimal threshold value of failure-rate for leased products with preventive maintenance actions,” Mathematical and Computer Modelling, vol. 46, no. 5-6, pp. 730-737, 2007.
    [25] Yeh, R. H., K. C. Kao, and W. L. Chang, “Optimal preventive maintenance policy for leased equipment using failure rate reduction,” Computers & Industrial Engineering, vol. 57, no. 1, pp. 304-309, 2009.

    QR CODE