簡易檢索 / 詳目顯示

研究生: 陳榕紳
Rong-Shen Chen
論文名稱: 可攜式自動鑽削系統原型機開發
Portable Automatic Drilling System: A Prototype
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 黃緒哲
Shiuh-Jer Huang
郭永麟
Yong-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 135
中文關鍵詞: 自動化鑽削串聯式彈性致動器控制器切換策略品質評量指標
外文關鍵詞: automatic drilling, series elastic actuator, switching control strategy, performance index
相關次數: 點閱:240下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鑽削加工是目前製造業中最常見到的金屬切削製程之一,在需要高精密度且
大量鑽孔需求的應用中(如印刷電路板製作以及飛機組裝加工過程),若是使用人
力進行鑽孔作業很容易造成加工品質的不穩定,同時難以勝任大量的鑽孔工作,
此為目前製造業需實現自動化鑽削的主要原因。為此本研究提出首套基於串聯式
彈性致動器的自動鑽削系統,使用串聯式彈性致動器的優點為不需安裝力量感測
器就能達成力量控制,並能將力量控制問題轉化為位置控制問題,簡化控制的複
雜程度,系統並同時結合吸附模組,使其能在不同位置與角度的工件下進行自動
鑽削作業。鑽削加工過程中提升加工面品質的兩大因素,第一為避免鑽頭接觸工
件表面瞬間所產生的衝擊力道,再者是為在鑽孔時維持一固定軸向切削力進行鑽
削加工。為了達成上述所提到的理想切削行為,本研究結合位置與力量控制的優
點,提出控制器切換策略應用於自動化鑽孔作業中,在獲得良好的加工面品質之
餘提升加工效率。最後量測系統於不同的控制器與鑽削條件下鑽孔的加工面品質,
量化與建立其品質評量指標,藉此找出本系統合適的鑽削條件,驗證所提出之自
動鑽削系統的可行性。


Drilling is the most popular metal cutting process in manufacturing industry (e.g., printed circuit board or aircraft assembly). However, it is difficult to achieve high quality drilling and mass production at the same time if relying on manual drilling. Therefore, the development of drill automation technology has become more and more crucial in recent years. This study presents the design and implementation of an automatic drilling system based on the concept of series elastic actuator (SEA). One advantage of using SEA for the current system design is the exemption from installing high cost force sensors for force control implementation. The force based control system has been transformed to a position based control system by adding the elastic components to the driven actuator and the environmental load. A magnetic adhesion module is included into our drilling system so that this system can handle workpiece drilling at different positions or inclined angles. There are two principal issues that should be considered during drilling process. The first one is to avoid the impact force generated at the moment the drill bit makes contact with the workpiece surface. The second one is the requirement of maintaining constant thrust force during the drilling process. To effectively address the issues mentioned above, this research presents a position/force switching control strategy to improve the drilling surface quality and drilling efficiency. Finally, the machined quality of the holes drilled by using different control strategies and drilling conditions are evaluated by measuring the surface roughness of the holes. Based on this drilling performance index, proper drilling conditions of the system can be found and the experiments justify the feasibility of the prototype of our proposed automatic drilling system.

中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 論文回顧與研究動機 3 1.3 本文架構與架構 12 第二章 系統設計與設備架構 14 2.1系統作動流程與設計 14 2.2系統設計細節 18 2.2.1鑽削參數測定實驗與分析 18 2.2.2位移機構設計 23 2.2.3串聯式彈簧機構設計 26 2.2.4鑽削模組設計 30 2.2.5吸附模組設計 33 2.3電路系統設備 34 2.3.1個人電腦 34 2.3.2 Arduino Mega 2560 控制板 34 2.3.3 L298N直流馬達控制模組 35 2.3.4 HCTL-2032解碼電路 37 2.3.5電源供應器 38 第三章 控制器設計與切換策略 39 3.1雙質量系統模型 40 3.2力量控制 44 3.3位置控制 50 3.4順應位置控制 55 第四章 鑽孔加工面品質評量指標 62 4.1品質影響因素 62 4.2加工面粗糙度量測與表示法 64 4.2.1表面粗糙度量測方式選擇 64 4.2.2表面粗糙度量測 66 4.2.3表面粗糙度表示法 67 4.3品質評量指標 69 第五章 實驗結果與討論 72 5.1實驗規劃 72 5.2實驗結果 73 5.2.1全程使用位置控制器 74 5.2.2全程使用力量控制器 78 5.2.3已知環境下的切換策略 81 5.2.4未知環境下的切換策略 85 5.3鑽孔品質量測與分析 90 第六章 結論與未來目標 98 6.1結論 98 6.2未來研究目標 99 參考文獻 101 附錄 106

[1]E. Brinksmeier, “Prediction of Tool Fracture in Drilling,” Annals of CIRP, vol. 39, pp. 97-100, 1990.
[2]DIGITIMES. (2011, Oct. 18). 因應自動化趨勢 鑽孔機展現新風貌 [Online]. Available: URL: http://www.digitimes.com.tw/iot/article.asp?cat=130&id=254500
[3]G. Alici and R. W. Daniel, “Compliant robot drilling dynamics and their implications for remote drilling tasks,” In Proc. Second Int. Conf. Automation, Singapore, 1992, pp. INV-3.1.1-INV-3.1.5.
[4]R. Knisley, “Apparatus for drilling oil and gas wells and a torque arrestor associated therewith,” U.S. Patent 4 512 422, Apr. 23 1985.
[5]O. M. Vestavik, “Device for drilling holes in the crust of the earth, especially for drilling oil wells,” U.S. Patent 5 526 887, Jun. 18 1996.
[6]J. E. Hipp, “High torque, low speed mud motor for use in drilling oil and gas wells,” U.S. Patent 6 050 346, Apr. 18 2000.
[7]ASSEMBLY. (2015, Apr. 2). Assembly Automation Takes Off in Aerospace Industry [Online]. Available: URL: http://www.assemblymag.com/articles/92790-assembly-automation-takes-off-in-aerospace-industry
[8]N. P. Avdelidis, D. P. Almond, and A. Dobbinson, “Aircraft composites assessment by means of transient thermal NDT,” Progress in Aerospace Sciences, vol. 40, no 3, pp. 143-162, 2004.
[9]每日頭條. (2016, Oct. 31). 一文讀懂航空連接技術:飛機上的工藝秘密 [Online]. Available: URL: https://kknews.cc/tech/l8npjxz.html
[10]SUNY. (2017). Auto tool change CNC drilling machine. PCB drilling machine [Online]. Available: URL: http://www.sunyinstrument.com/index.php?route=product/product&product_id=332
[11]X. Huang, L. Zheng, and C. Wang, “Drilling characteristics of entry board and the influence on PCB micro drilling process,” In Proc. 2016 11th Int. Assembly and Circuits Technology Conference (IMPACT), Taipei, Taiwan, 2016, pp. 119-124.
[12]S. A. Tobias, Machine-tool vibration, London: Blackie and Son Ltd., 1965.
[13]J. L. Cantero, M. M. Tardı´o, and J. A. Canteli, “Dry drilling of alloy Ti–6Al–4V,” International Journal of Machine Tools and Manufacture, vol. 45, no 11, pp. 1246-1255, 2005.
[14]I. J. Smith, D. Gillibrand, and J.S. Brooks, “Dry cutting performance of HSS twist drills coated with improved TiAlNl,” Surface and Coatings Technology, vol. 90, no 1-2, pp. 164-171, 1997.
[15]黃安橋, 鄒博年, “自動鑽削之順應運動及力量伺服控制器設計與實作,” 國立臺灣科技大學機械工程研究所碩士論文, 2014.
[16]N. Hogan, “Impedance Control: An Approach to Manipulation: Part I-Theory,” Journal of Dynamic Systems, Measurement, and Control, vol. 107, no 1, pp. 1-7, 1985.
[17]N. Hogan, “Impedance control: An approach to manipulation: Part II-Implementation,” Journal of Dynamic Systems, Measurement, and Control, vol. 107, no 1, pp. 8-16, 1985.
[18]N. Hogan, “Impedance Control: An Approach to Manipulation: Part III-Applications,” Journal of Dynamic Systems, Measurement, and Control, vol. 107, no 1, pp. 17-24 1985.
[19]R. Haber-Haber and R. Haber, “A classic solution for the control of a high-performance drilling process,” International Journal of Machine Tools and Manufacture, vol. 47, no 15, pp. 2290-2297, 2007.
[20]J. B. Kim, S-J Lee, and Y. P. Park, “Stable and efficient drilling process by active control of the thrust force,” Mechanical Systems and Signal, vol. 8, no 5, pp. 585-595, 1994.
[21]G. Alici, “A systematic approach to develop a force control system for robotic drilling,” Industrial Robot: An International Journal, vol. 26, no 5, pp. 389-397, 1999.
[22]Z. Liu, J. J. Liu, and J. W. Zhong, “The application of hydraulic rock drill axial thrust control based on fuzzy PID control,” In Proc. 2016 IEEE Int. Conf. Mechatronics and Automation (ICMA), Harbin, China, 2016, pp. 7-10.
[23]A. Krishnamoorthy, R. V. Sarathy, and S. R. Boopathy, “Modeling of thrust force in drilling of CFRP composites using adaptive neuro fuzzy inference system,” Frontiers in Automobile and Mechanical Engineering (FAME), Chennai, India, 2010, pp. 60-67.
[24]K. Youcef-Toumi and D. A. Gutz, “Impact and force control,” In Proc. 1989 IEEE Int. Conf. Robotics and Automation, Scottsdale, AZ, USA, 1989, pp. 410 - 416.
[25]R. Paul, “Problems and research issues associated with the hybrid control of force and displacement,” In Proc. 1987 IEEE Int. Conf. Robotics and Automation, Raleigh, NC, USA, 1987, pp. 1966 - 1971.
[26]陳漢雄, “機械手臂混合位置/阻抗控制之研究,” 國立臺灣科技大學自動化及控制研究所碩士論文, 2010.
[27]S. Haddadin, A. Albu-Schaffer, and G. Hirzinger, “The role of the robot mass and velocity in physical human-robot interaction - Part I: Non-constrained blunt impacts,” In Proc. IEEE Int. Conf. Robotics and Automation, Pasadena, CA, USA, 2008, pp. 1331 - 1338.
[28]S. Haddadin, A. Albu-Schaffer, and M. Frommberger, “The role of the robot mass and velocity in physical human-robot interaction - Part II: Constrained blunt impacts,” In Proc. IEEE Int. Conf. Robotics and Automation, Pasadena, CA, USA, 2008, pp. 1339 - 1345.
[29]N. Dini, V. J. Majd, and F. Edrisi, “Estimation of external forces acting on the legs of a quadruped robot using two nonlinear disturbance observers,” In Proc. 2016 4th Int. Conf. Robotics and Mechatronics (ICROM), Tehran, Iran, 2016, pp. 72-77.
[30]H. Kawasaki and S. Ueki, “Disturbance observer estimating frictions and external forces for robot manipulators,” In Proc. 2016 IEEE ANDESCON, Arequipa, Peru, 2016, pp. 1-4.
[31]G. A. Pratt and M. M. Williamson, “Series elastic actuators,” In Proc. 1995 IEEE/RSJ Int. Conf. Intelligent Robots and Systems 95, Pittsburgh, PA, USA, 1995, pp. 399-406.
[32]S. D. Eppinger and W.P. Seering, “Three dynamic problems in robot force control,” In Proc. 1989 IEEE Int. Conf. Robotics and Automation, Scottsdale, AZ, USA, 1989, pp. 392 - 397.
[33]S. Eppinger and W. Seering, “Understanding bandwidth limitations in robot force control,” In Proc. 1987 IEEE Int. Conf. Robotics and Automation, Raleigh, NC, USA, 1987, pp. 904-909.
[34]D. Leach, F Gunther, and N Maheshwari, “Linear Multimodal Actuation Through Discrete Coupling,” IEEE/ASME Transactions on Mechatronics, vol. 19, no 3, pp. 827 - 839, 2013.
[35]陳信安, “單足跳躍機器人之分析與實作,” 國立清華大學動力機械工程研究所碩士論文, 2007.
[36]S. Oh and K. Kong, “High-Precision Robust Force Control of a Series Elastic Actuator,” IEEE/ASME Transactions on Mechatronics, vol. 22, no 1, pp. 71 - 80, 2017.
[37]J. P. Cummings, D. Ruiken, and E. L. Wilkinson, “A Compact, Modular Series Elastic Actuator,” Journal of Mechanisms and Robotics, vol. 8, no 4, pp. 041016 1-11, 2016.
[38]M. H. Raibert and J. J. Craig, “Hybrid Position/Force Control of Manipulators,” Journal of Dynamic Systems, Measurement, and Control, vol. 103, no 2, pp. 126-133, 1981.
[39]P. Yuan, T. Wang, and F. Ma “A design and simulation of aircraft drilling end-effector based on bionics,” In Proc. 2012 IEEE Conf. Multisensor Fusion and Integration for Intelligent Systems (MFI), Hamburg, Germany, 2012, pp. 206 - 211.
[40]“OptoForce HEX-58-RE-400N,” https://optoforce.com/6-axis-f-t-sensor
[41]“BOSCH 10.8V (GSR10.8-2-Li),” http://www.bosch-pt.com.tw/tw/zh/cordless-drilldriver-gsr-12-2-li-226567-06018681c2.html
[42]“滾珠螺桿的特徵與類型,” https://tech.thk.com/ct/products/pdf/tc_b15_006.pdf
[43]“DC Motor 3M3535-15YC,” http://sohomotor.com/catalog/MOTOR/3M3535.pdf
[44]“Planetary Gear GBP30,” http://sohomotor.com/catalog/PLANETARY%20GAER/GBP30.pdf
[45]“BOURNS Linear Motion Potentiometers,” http://www.bourns.com/products/potentiometers/linear-motion-potentiometers
[46]“MiSUMi UTT13-20,” http://tw.misumi-ec.com/vona2/detail/110302605070/?catalogType=00000573906&PNSearch=UTT&searchFlow=results2products&Keyword=UTT
[47]“JTO電鑽夾0.3-4MM,” http://goods.ruten.com.tw/item/show?21627058386536
[48]S. Kalpakjian and S. R. Schmid, Manufacturing Engineering and Technology, 7th ed, Singapore: Pearson Education South Asia Pte Ltd., 2013.
[49]“DC MotorDC Motor 7E4060B-20Y,” http://sohomotor.com/Product_01_2.html
[50]“SH-ET5030,” http://shop.cpu.com.tw/product/27621/info/
[51]“Arduino Mega 2560 ,” https://www.arduino.cc/en/Main/arduinoBoardMega2560?setlang=en
[52]“L298N motor driver module,” http://www.14core.com/wiring-driving-the-l298n-h-bridge-on-2-to-4-dc-motors/
[53]“Avago HCTL-2032-SC,” https://docs.broadcom.com/docs/AV02-0096EN
[54]N. L. Tagliamonte and D. Accoto, “Passivity constraints for the impedance control of series elastic actuators,” In Proc. Inst. Mech. Eng., I, J. Syst. Control Eng., vol. 228, no. 3, pp. 138–153, 2014.
[55]H. Vallery et al., “Compliant actuation of rehabilitation robots,” IEEE Robot. Autom. Mag., vol. 15, no. 3, pp. 60–69, 2008.
[56]T. Boaventura et al., “On the role of load motion compensation in highperformance
force control,” in Proc. 2012 IEEE/RSJ Int. Conf. Intell. Robots Syst., 2012, pp. 4066–4071.
[57]K. Kong, J. Bae, and M. Tomizuka, “Control of rotary series elastic actuator for ideal force-mode actuation in human-robot interaction applications,” IEEE/ASME Trans. Mechatronics, vol. 14, no. 1, pp. 105–118, 2009.
[58]洪量德, 機工實習(1), 台灣:全華科技圖書股份有限公司, 1995.
[59]“比較量測法-粗糙度標準片,” http://140.112.14.7/~measlab/course/101上/精密量測/表面粗度量測原理與技術%20(NTU%202012).pdf
[60]H. L. Hsieh, Y. G. Huang, and Y. H. Tsai “Development of a wafer warpage measurement technique using Moiré-based method,” Applied optics, vol. 55, no 16, pp. 4370 - 4377, 2016.
[61]“HOMMEL-ETAMIC T8000 / C8000 Stationary roughness and contour measurement,” http://booth-newspapers.com/metrocalpdfs/jenoptik/HOMMEL-ETAMIC%20T8000%20%20C8000.pdf
[62]“MiSUMi-VONA (技術參數)表面粗糙度,” http://cn.misumi-ec.com/maker/misumi/press/tech/20.html
[63]林寰生, 實用精密量測與機件檢驗, 台灣:全欣科技圖書股份有限公司, 1994.

QR CODE