簡易檢索 / 詳目顯示

研究生: 李哲誠
Zhe-Cheng Li
論文名稱: 以熱注入法合成CsPbX3量子點並 進行穩定性優化程序
Synthesizing CsPbX3 Quantum Dots via Hot Injection Method and Optimizing the Process for Stability
指導教授: 陳良益
Liang-Yih Chen
口試委員: 陳良益
Liang-Yih Chen
江志強
Jyh-Chiang Jiang
吳季珍
Jih-Jen Wu
陳貞夙
Jen-Sue Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 171
中文關鍵詞: 量子點鈣鈦礦熱注入
外文關鍵詞: quantum dots, pervoskite, hot-injection
相關次數: 點閱:151下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要以熱注入合成法進行全無機溴化銫鉛鈣鈦礦量子點材料製備,並透過雙十二烷基二甲基溴化銨或水分子進行後段處理,並藉由結構分析與光學性質量測進行後處理對溴化銫鉛鈣鈦礦量子點的特性研究。由分析結果可知:經過雙十二烷基二甲基溴化銨後段處理所製備的溴化銫鉛鈣鈦礦量子點,其螢光量子效率分別可達91.8 %,並且可以穩定地保存於甲苯達90天以上;經過水分子後段處理。所製備的溴化銫鉛鈣鈦礦量子點,其螢光量子效率分別可達91.5 %,並且可以穩定地保存於正己烷達60天以上。此外,對於紅色激發光的溴碘化銫鉛鈣鈦礦量子點可藉由錳離子的摻雜來提升螢光量子效率以及穩定性。經由分析結果可知:錳離子摻雜後的溴碘化銫鉛鈣鈦礦量子點之量子螢光效率可達96.1 %,並可在辛烷中可以保存180天以上。在銫鉛鹵素鈣鈦礦量子點穩定性研究方面,在本研究中以矽酸四甲酯水解反應所形成二氧化矽做為銫鉛鹵素鈣鈦礦量子點的水氧阻隔層並進行粉體製作。由分析結果顯示:經二氧化矽包覆的銫鉛鹵素鈣鈦礦量子點粉體都具有阻擋水氣破壞的影響並延長其螢光壽命。接著,將二氧化矽包覆溴化銫鉛量子點粉體與溴碘化銫鉛量子點粉體與聚甲基丙烯酸甲酯分散於甲苯溶液均勻混合後製成光轉換層,並置於激發光波段位於460 nm的氮化銦鎵藍光二極體晶片上,可測量其色度座標位置為(0.3376,0.3366),並在施加電壓2.5伏特所量測到的色溫約為5400 K,發光效率35 lmW-1及輝度1787 cdm-2。此外,其色域達128 %NTSC標準。 


    In this study, a hot-injection process was used to synthesized all-inorganic perovskite cesium lead bromide quantum dots (CsPbBr3 -QDs) and dodecyldimethylammonium bromide (DDABr) molecule or water molecules were used for post-treatment. Structural analyses and optical properties measurement were used to characterize without or with post-treated CsPbBr3 ¬QDs. From analysis results, we could know that after DDAB post-treated CsPbBr3 ¬QDs could obtain photoluminescence quantum yield (PL-QY) of 91.8 % and storage in toluene for 90 days, and after H2O post-treated CsPbBr3 ¬QDs could obtain PL-QY of 91.5 % and storage in n-hexane for 60 days. In addition, for red emission CsPb(I/Br)3 QDs, manganese (Mn) was used as dopant for improving the PL-QY and stability. According to analysis results, Mn doped CsPb(I/Br)3 QDs could obtain PL-QY of 96.1 % and storage in octane for 180 days. For the stability of CsPbX3 (X=Br, I) ¬QDs, tetramethyl orthosilicate (TMOS) was used as precursor for silica shell formation enclosed on the surfaces of CsPbX3 QDs. Silica shell could be regarded as humidity and oxygen barrier layer and powder fabrication. From analysis results, we could know that the stability of CsPbX3 QDs could be improved by silica barrier layer due to reduce the influence of humidity. In the next, CsPbBr3/SiO2 and [CsPb(Br/I)3]/SiO2 powders were blended together to mix with poly (methyl methacrylate) (PMMA) as light convert layer. Combing the light convert layer with blue indium gallium nitride (InGaN) light emitting diode (LED) chip with 460 nm, CIE 1931 uniform chromaticity color space, color temperature, luminous efficiency and luminance were (0.3376, 0.3366), 5400 K, 35 lmW-1 and 1787 cdm-2 under 2.5 volt. In addition, the color gamut could achieve 128 % of NTSC standard.

    中文摘要 III Abstract V 致謝 VII 目錄 VIII 圖目錄 XIII 表目錄 XXIV 第一章 、緒論 1 1-1 奈米晶體簡介 1 1-2 奈米晶體的特性 2 1-3 研究動機與目的 5 第二章 、理論基礎與回顧 7 2-1半導體材料特性 7 2-2鈣鈦礦奈米材料 11 2-2-1鈣鈦礦結構 11 2-2-2鉛鹵鈣鈦礦材料 12 2-2-3鉛鹵鈣鈦礦量子點特性 13 2-2-4 CsPbX3 (X=Cl, Br, I)量子點合成 13 2-2-4-1熱注入法 13 2-2-4-2室溫合成法 16 2-2-5 CsPbX3 (X=Cl, Br, I)陰、陽離子置換 22 2-2-5-1陰離子置換 22 2-2-5-2陽離子置換 27 2-2-6 CsPbX3 (X=Cl, Br, I)光學性質與量測 30 2-2-6-1光致發光原理 30 2-2-6-2螢光量子效率量測 30 2-3 CsPbX3 (X=Cl, Br, I)形態控制與穩定性探討 31 2-3-1 CsPbX3 (X=Cl, Br, I)尺寸與形狀控制 31 2-3-2 CsPbX3 (X=Cl/Br/I)穩定性 38 2-3-2-1 CsPbX3 (X=Cl/Br/I)結構穩定性 38 2-3-2-2 CsPbX3 (X=Cl/Br/I)光穩定性 41 2-3-2-3 ABX3 (X=Cl/Br/I)溶劑穩定性 42 2-3-3 CsPbX3 (X=Cl, Br, I)穩定性提升 44 2-3-3-1 CsPbX3 (X=Cl/Br/I)表面鈍化 44 2-3-3-2 CsPbX3 (X=Cl/Br/I)複合材料 48 2-4 CsPbX3 (X=Cl, Br, I)量子點之應用 53 2-4-1 CsPbX3 (X=Cl, Br, I)白光轉換層 53 2-4-2 CsPbX3 (X=Cl, Br, I)發光二極體 57 第三章 、實驗設計 62 3-1實驗流程圖 62 3-2實驗藥品 63 3實驗分析儀器 68 3-3-1紫外光-可見光光譜儀(UV/VIS Spectrophotometer) 68 3-3-2螢光光譜儀(Fluorescence Spectrophotometer) 69 3-3-3 X 光繞射分析儀(X-ray Diffraction,XRD) 70 3-3-4場發穿透式電子顯微鏡 (Transmission electron microscope,TEM) 71 3-4-5時間解析光致發光測量系統(Time-resolved photoluminescence,TRPL) 73 3-4實驗步驟 74 3-4-1以熱注入法合成CsPbBr3量子點 74 3-4-2以DDAB修飾CsPbBr3量子點 76 3-4-3以水分子進行CsPbBr3量子點後處理 77 3-4-4以熱注入法合成CsPb(I/Br)3量子點 78 3-4-5以熱注入法合成Mn:CsPb(I/Br)3量子點 80 3-4-6量測CsPbX3量子點螢光量子效率 83 3-4-7 CsPbX3/SiO2量子點複合材料製備 86 3-4-8 CsPbX3/SiO2製備白色發光元件 88 第四章 、結果與討論 89 4-1以熱注入法進行CsPbBr3之製程優化探討 89 4-1-1 CsPbBr3量子點合成與性質分析 89 4-1-2利用雙十二烷基二甲基溴化銨後處理進行CsPbBr3量子點表面修飾與性質分析 94 4-1-3利用水分子後處理進行CsPbBr3量子點表面處理與性質分析 102 4-2 CsPb(I/Br)3量子點製備與性質分析 109 4-2-1以熱注入法進行CsPb(I/Br)3量子點合成與性質分析 109 4-2-2進行Mn:CsPb(I/Br)3 量子點製備與性質分析 113 4-3 以TMOS製備CsPbX3/SiO2量子點 119 4-3-1 CsPbBr3/SiO2量子點製備與其性質分析 120 4-3-2 [CsPb(I/Br)3]/SiO2量子點製備與其性質分析 124 4-4 以CsPbX3量子點為光轉換材料進行白色發光二極體製作與特性分析 127 4-4-1 CsPbX3量子點白色發光二極體的製程探討 127 4-4-2 CsPbX3量子點白色發光二極體的光電性質分析 131 第五章 、結論 135 第六章 、參考文獻 136

    1. 李世光 and 廖達珊, 奈米科技交響曲──化學篇. (國立臺灣大學出版中心, 2004).
    2. M. V. Limaye, S. B. Singh, S. K. Date, D. Kothari, V. R. Reddy, A. Gupta, V. Sathe, R. J. Choudhary and S. K. Kulkarn, High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature, Journal of Physical Chemistry B 113, 9070-9076 (2009).
    3. 高濂, 奈米陶瓷. (五南圖書出版, 2003).
    4. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut, Nano Letters 15 (6), 3692-3696 (2015).
    5. R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore and H. J. Snaith, Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells, Advanced Energy Materials 6 (8), 1502458 (2016).
    6. K. Park, J. W. Lee, J. D. Kim, N. S. Han, D. M. Jang, S. Jeong, J. Park and J. K. Song, Light-matter interactions in cesium lead halide perovskite nanowire lasers, Journal of Physical Chemistry Letters 7 (18), 3703-3710 (2016).
    7. D. H. Park, J. S. Han, W. Kim and H. S. Jang, Facile synthesis of thermally stable CsPbBr3 perovskite quantum dot-inorganic SiO2 composites and their application to white light-emitting diodes with wide color gamut, Dyes and Pigments 149, 246-252 (2018).
    8. B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. D. Angelis and H.-G. Boyen, Intrinsic thermal instability of methylammonium lead trihalide perovskite, Advanced Energy Materials 5 (15), 1500477 (2015).
    9. E. J. Juarez-Perez, Z. Hawash, S. R. Raga, L. K. Ono and Y. Qi, Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis, Energy & Environmental Science 9 (11), 3406-3410 (2016).
    10. S. Huang, Z. Li, B. Wang, N. Zhu, C. Zhang, L. Kong, Q. Zhang, A. Shan and L. Li, Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination, ACS Applied Materials & Interfaces 9 (8), 7249-7258 (2017).
    11. Q. A. Akkerman, V. D'Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato and L. Manna, Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions, Journal of the American Chemical Society 137 (32), 10276-10281 (2015).
    12. G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent and M. V. Kovalenko, Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, I), Nano Letters 15 (8), 5635-5640 (2015).
    13. M. Fox and G. F. Bertsch, Optical properties of solids, American Journal of Physics 70 (12), 1269-1270 (2002).
    14. K. V. R. M. Murali, V. B. Naik and D. Datta, Gallium-nitride-based light-emitting diodes, Resonance 20 (7), 605-616 (2015).
    15. A. S. Bhalla, R. Guo and R. Roy, The perovskite structure–a review of its role in ceramic science and technology, Material Research Innovations 4 (1), 3-26 (2000).
    16. Z. Cheng and J. Lin, Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering, CrystEngComm 12 (10), 2646-2662 (2010).
    17. H. L. Wells, Uber die casium- und kalium-bleihalogenide, Anorganische Chemie 3 (1), 195-210 (1893).
    18. I. Chung, B. Lee, J. He, R. P. Chang and M. G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency, Nature 485 (7399), 486-489 (2012).
    19. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel and N. G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %, Scientific Reports 2, 591 (2012).
    20. M. M. Lee, J. Teuscher, T. Miyasaka, T. N, Murakami and H. J. Snaith1, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science 338, 643-647 (2012).
    21. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, Journal of the American Chemical Society 131, 6050-6051 (2009).
    22. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh and S. I. Seok, Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells, Science 356, 1376-1379 (2017).
    23. V. D'Innocenzo, A. R. Srimath Kandada, M. De Bastiani, M. Gandini and A. Petrozza, Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite, Journal of the American Chemical Society 136 (51), 17730-17733 (2014).
    24. F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillips and R. H. Friend, High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors, Journal of Physical Chemistry Letters 5 (8), 1421-1426 (2014).
    25. Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith and R. H. Friend, Bright light-emitting diodes based on organometal halide perovskite, Nature Nanotechnology 9 (9), 687-692 (2014).
    26. S. D. Stranks and H. J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices, Nature Nanotechnology 10 (5), 391-402 (2015).
    27. J. Shamsi, A. S. Urban, M. Imran, L. De Trizio and L. Manna, Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties, Chemical Reviews 119 (5), 3296-3348 (2019).
    28. C. K. Moller, A phase transition in caesium plumbochloride, Nature 180, 981-982 (1957).
    29. C. K. Moller, Crystal structure and photoconductivity of caesium plumbohalides, Nature 182, 1436-1436 (1958).
    30. J. Mizusaki, Kimiyasu, Arai and K. Fueki, Ionic conduction of the perovskite-type halides, Solid State Ionics 11, 203-211 (1983).
    31. M.Nikl, K.Nitsch, K.Polák, E.Mihókova, S.Zazubovich, G.P.Pazzi, P.Fabeni, L.Salvini, R.Aceves, M.Barbosa-Flores, R.PerezSalas, M.Gurioli and A.Scacco, Quantum size effect in the excitonic luminescence of CsPbX3-like quantum dots in CsX (X = Cl, Br) single crystal host, Journal of Luminescence 72-74, 377-379 (1997).
    32. L. C. Schmidt, A. Pertegas, S. Gonzalez-Carrero, O. Malinkiewicz, S. Agouram, G. Minguez Espallargas, H. J. Bolink, R. E. Galian and J. Perez-Prieto, Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles, Journal of the American Chemical Society 136 (3), 850-853 (2014).
    33. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko, Nanocrystals of Cesium Lead Halide Perovskites (CsPbX(3), X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut, Nano Lett 15 (6), 3692-3696 (2015).
    34. X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song and H. Zeng, CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes, Advanced Functional Materials 26 (15), 2435-2445 (2016).
    35. S. Seth and A. Samanta, A facile methodology for engineering the morphology of CsPbX3 perovskite nanocrystals under ambient condition, Scientific Reports 6, 37693 (2016).
    36. S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang and D. Pan, Room-temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50-85 % photoluminescence quantum yields, Chemical Communications 52 (45), 7265-7268 (2016).
    37. K.-H. Wang, L. Wu, L. Li, H.-B. Yao, H.-S. Qian and S.-H. Yu, Large-scale synthesis of highly luminescentperovskite-related CsPb2Br5 nanoplatelets and their fast anion exchange, Angewandte Chemie International Edition 55, 8328-8332 (2016).
    38. C. B. Murray, D. J. Norris and M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E= S, Se, Te) semiconductor nanocrystallites, Journal of the American Chemical Society 115, 8706-8715 (1993).
    39. W. W. Yu and X. Peng, Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers, Angewandte Chemie International Edition 41, 2368-2371 (2002).
    40. C. R. Bullen and P. Mulvaney, Nucleation and growth kinetics of CdSe nanocrystals in octadecene, Nano Letters 4, 2304-2307 (2004).
    41. S. Deka, A. Genovese, Y. Zhang, K. Miszta, G. Bertoni, R. Krahne, C. Giannini and L. Manna, Phosphine-free synthesis of p-type copper(I) selenide nanocrystals in hot coordinating solvents, Journal of the American Chemical Society 132, 8912-8914 (2010).
    42. V. K. LaMer and R. H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, Journal of the American Chemical Society 72 (11), 4847-4854 (1950).
    43. J. Shamsi, P. Rastogi, V. Caligiuri, A. L. Abdelhady, D. Spirito, L. Manna and R. Krahne, Bright-emitting perovskite films by large-scale synthesis and photoinduced solid-state transformation of CsPbBr3 nanoplatelets, ACS Nano 11 (10), 10206-10213 (2017).
    44. F. Fang, W. Chen, Y. Li, H. Liu, M. Mei, R. Zhang, J. Hao, M. Mikita, W. Cao, R. Pan, K. Wang and X. W. Sun, Employing polar solvent controlled ionization in precursors for synthesis of high-quality inorganic perovskite nanocrystals at room temperature, Advanced Functional Materials 28 (10), 1706000 (2018).
    45. M. V. Kovalenko, L. Protesescu and M. I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals, Science 358, 745-750 (2017).
    46. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells, Nano Letters 13 (4), 1764-1769 (2013).
    47. N. Pellet, J. Teuscher, J. Maier and M. Grätzel, Transforming hybrid organic inorganic perovskites by rapid halide exchange, Chemistry of Materials 27 (6), 2181-2188 (2015).
    48. J. Mizusaki, K. Arai and K. Fueki, Ionic conduction of the perovskite-type halides, Solid State Ionics 11, 203-211 (1983).
    49. P. Ramasamy, D. H. Lim, B. Kim, S. H. Lee, M. S. Lee and J. S. Lee, All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications, Chemical Communications 52 (10), 2067-2070 (2016).
    50. M. Imran, V. Caligiuri, M. Wang, L. Goldoni, M. Prato, R. Krahne, L. De Trizio and L. Manna, Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals, Journal of the American Chemical Society 140 (7), 2656-2664 (2018).
    51. T. Zhang, G. Li, Y. Chang, X. Wang, B. Zhang, H. Mou and Y. Jiang, Full-spectra hyperfluorescence cesium lead halide perovskite nanocrystals obtained by efficient halogen anion exchange using zinc halogenide salts, CrystEngComm 19 (8), 1165-1171 (2017).
    52. S. Fang, G. Li, Y. Lu and L. Li, Highly luminescent CsPbX3 (X=Cl, Br,I) nanocrystals achieved by a rapid anion exchange at room temperature, Chemistry European Journal 24, 1898-1904 (2018).
    53. C. Guhrenz, A. Benad, C. Ziegler, D. Haubold, N. Gaponik and A. Eychmüller, Solid-state anion exchange reactions for color tuning of CsPbX3 perovskite nanocrystals, Chemistry of Materials 28 (24), 9033-9040 (2016).
    54. L. De Trizio and L. Manna, Forging colloidal nanostructures via cation exchange reactions, Chemical Reviews 116 (18), 10852-10887 (2016).
    55. L. Protesescu, S. Yakunin, S. Kumar, J. Bar, F. Bertolotti, N. Masciocchi, A. Guagliardi, M. Grotevent, I. Shorubalko, M. I. Bodnarchuk, C. J. Shih and M. V. Kovalenko, Dismantling the "red wall" of colloidal perovskites: highly luminescent formamidinium and formamidinium-cesium lead iodide nanocrystals, ACS Nano 11 (3), 3119-3134 (2017).
    56. W. van der Stam, J. J. Geuchies, T. Altantzis, K. H. van den Bos, J. D. Meeldijk, S. Van Aert, S. Bals, D. Vanmaekelbergh and C. de Mello Donega, Highly emissive divalent-ion-doped colloidal CsPb1-xMxBr3 perovskite nanocrystals through cation exchange, Journal of the American Chemical Society 139 (11), 4087-4097 (2017).
    57. Y. Bekenstein, B. A. Koscher, S. W. Eaton, P. Yang and A. P. Alivisatos, Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies, Journal of the American Chemical Society 137 (51), 16008-16011 (2015).
    58. D. Zhang, S. W. Eaton, Y. Yu, L. Dou and P. Yang, Solution-phase synthesis of cesium lead halide perovskite nanowires, Journal of the American Chemical Society 137 (29), 9230-9233 (2015).
    59. A. Pan, B. He, X. Fan, Z. Liu, J. J. Urban, A. P. Alivisatos, L. He and Y. Liu, Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors, ACS Nano 10 (8), 7943-7954 (2016).
    60. G. Almeida, L. Goldoni, Q. Akkerman, Z. Dang, A. H. Khan, S. Marras, I. Moreels and L. Manna, Role of acid-base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals, ACS Nano 12 (2), 1704-1711 (2018).
    61. Y. Dong, T. Qiao, D. Kim, D. Parobek, D. Rossi and D. H. Son, Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium, Nano Letters 18 (6), 3716-3722 (2018).
    62. D. M. Trots and S. V. Myagkota, High-temperature structural evolution of caesium and rubidium triiodoplumbates, Journal of Physics and Chemistry of Solids 69 (10), 2520-2526 (2008).
    63. C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorganic Chemistry 52 (15), 9019-9038 (2013).
    64. A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti and J. M. Luther, Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics, Science 354, 92-95 (2016).
    65. X. Li, F. Cao, D. Yu, J. Chen, Z. Sun, Y. Shen, Y. Zhu, L. Wang, Y. Wei, Y. Wu and H. Zeng, All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications, Small 13 (9), 1603996 (2017).
    66. W. Li, Z. Wang, F. Deschler, S. Gao, R. H. Friend and A. K. Cheetham, Chemically diverse and multifunctional hybrid organic–inorganic perovskites, Nature Reviews Materials 2 (3), 16099 (2017).
    67. J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W. Tress and A. Hagfeldt, Promises and challenges of perovskite solar cells., Science 2017, 358 (2017).
    68. W. Travis, E. N. K. Glover, H. Bronstein, D. O. Scanlon and R. G. Palgrave, On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system, Chemical Science 7 (7), 4548-4556 (2016).
    69. J. Chen, D. Liu, M. J. Al-Marri, L. Nuuttila, H. Lehtivuori and K. Zheng, Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application, Science China Materials 59 (9), 719-727 (2016).
    70. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde and A. Walsh, Atomistic origins of high-performance in hybrid halide perovskite solar cells, Nano Letters 14 (5), 2584-2590 (2014).
    71. A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo and P. R. F. Barnes, Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells, Chemistry of Materials 27 (9), 3397-3407 (2015).
    72. J. Pan, S. P. Sarmah, B. Murali, I. Dursun, W. Peng, M. R. Parida, J. Liu, L. Sinatra, N. Alyami, C. Zhao, E. Alarousu, T. K. Ng, B. S. Ooi, O. M. Bakr and O. F. Mohammed, Air-stable surface-passivated perovskite quantum dots for ultra-robust, single- and two-photon-induced amplified spontaneous emission, Journal of Physical Chemistry Letters 6 (24), 5027-5033 (2015).
    73. F. Liu, Y. Zhang, C. Ding, S. Kobayashi, T. Izuishi, N. Nakazawa, T. Toyoda, T. Ohta, S. Hayase, T. Minemoto, K. Yoshino, S. Dai and Q. Shen, Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100 % absolute photoluminescence quantum yield, ACS Nano 11 (10), 10373-10383 (2017).
    74. J. De Roo, M. Ibanez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. C. Martins, I. Van Driessche, M. V. Kovalenko and Z. Hens, Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals, ACS Nano 10 (2), 2071-2081 (2016).
    75. J. Pan, Y. Shang, J. Yin, M. De Bastiani, W. Peng, I. Dursun, L. Sinatra, A. M. El-Zohry, M. N. Hedhili, A. H. Emwas, O. F. Mohammed, Z. Ning and O. M. Bakr, Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes, Journal of the American Chemical Society 140 (2), 562-565 (2018).
    76. S. N. Raja, Y. Bekenstein, M. A. Koc, S. Fischer, D. Zhang, L. Lin, R. O. Ritchie, P. Yang and A. P. Alivisatos, Encapsulation of perovskite nanocrystals into macroscale polymer matrices: enhanced stability and polarization, ACS Applied Materials & Interfaces 8 (51), 35523-35533 (2016).
    77. E. I. Hormats and F. C. Unterleitner, Measurement of the diffusion of oxygen in polymers by phosphorescent quenching, Journal of Physical Chemistry 69, 3677-3681 (1965).
    78. A. Lita, A. L. Washington, 2nd, L. van de Burgt, G. F. Strouse and A. E. Stiegman, Stable efficient solid-state white-light-emitting phosphor with a high scotopic/photopic ratio fabricated from fused CdSe-silica nanocomposites, Advanced Materials 22 (36), 3987-3991 (2010).
    79. C. McDonagh, F. Sheridan, T. Butler and B. D. MacCraith, Characterisation of sol-gel-derived silica films Journal of Non-Crystalline Solids 194, 72-77 (1996).
    80. C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang and W. W. Yu, Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots, Advanced Materials 28 (45), 10088-10094 (2016).
    81. H. C. Yoon, S. Lee, J. K. Song, H. Yang and Y. R. Do, Efficient and stable CsPbBr3 quantum-dot powders passivated and encapsulated with a mixed silicon nitride and silicon oxide inorganic polymer matrix, ACS Applied Materials & Interfaces 10 (14), 11756-11767 (2018).
    82. Y. Liu, F. Li, Q. Liu and Z. Xia, Synergetic effect of postsynthetic water treatment on the enhanced photoluminescence and stability of CsPbX3 (X=Cl, Br, I) perovskite nanocrystals, Chemistry of Materials 30 (19), 6922-6929 (2018).
    83. B. W. D'Andrade and S. R. Forrest, White organic light-emitting devices for solid-state lighting, Advanced Materials 16 (18), 1585-1595 (2004).
    84. J. Zhou, F. Huang, H. Lin, Z. Lin, J. Xu and Y. Wang, Inorganic halide perovskite quantum dot modified YAG-based white LEDs with superior performance, Journal of Materials Chemistry C 4 (32), 7601-7606 (2016).
    85. H. C. Yoon, H. Kang, S. Lee, J. H. Oh, H. Yang and Y. R. Do, Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance, ACS Applied Materials & Interfaces 8 (28), 18189-18200 (2016).
    86. J. Song, J. Li, X. Li, L. Xu, Y. Dong and H. Zeng, Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3), Advanced Materials 27 (44), 7162-7167 (2015).
    87. J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han and H. Zeng, 50-Fold EQE improvement up to 6.27 % of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control, Advanced Materials 29 (5), 1603885 (2017).
    88. X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang, W. C. Choy and A. L. Rogach, Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer, Nano Letters 16 (2), 1415-1420 (2016).
    89. X. Zhang, B. Xu, J. Zhang, Y. Gao, Y. Zheng, K. Wang and X. W. Sun, All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3-CsPb2Br5 composites, Advanced Functional Materials 26 (25), 4595-4600 (2016).
    90. J. Pan, L. N. Quan, Y. Zhao, W. Peng, B. Murali, S. P. Sarmah, M. Yuan, L. Sinatra, N. M. Alyami, J. Liu, E. Yassitepe, Z. Yang, O. Voznyy, R. Comin, M. N. Hedhili, O. F. Mohammed, Z. H. Lu, D. H. Kim, E. H. Sargent and O. M. Bakr, Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering, Advanced Materials 28 (39), 8718-8725 (2016).
    91. E. Yassitepe, Z. Yang, O. Voznyy, Y. Kim, G. Walters, J. A. Castañeda, P. Kanjanaboos, M. Yuan, X. Gong, F. Fan, J. Pan, S. Hoogland, R. Comin, O. M. Bakr, L. A. Padilha, A. F. Nogueira and E. H. Sargent, Amine-free synthesis of cesium lead halide perovskite quantum dots for efficient light-emitting diodes, Advanced Functional Materials 26 (47), 8757-8763 (2016).
    92. H. Huang, H. Lin, S. V. Kershaw, A. S. Susha, W. C. Choy and A. L. Rogach, Polyhedral oligomeric silsesquioxane enhances the brightness of perovskite nanocrystal-based green light-emitting devices, Journal of Physical Chemistry Letters 7 (21), 4398-4404 (2016).
    93. Q. Shan, J. Li, J. Song, Y. Zou, L. Xu, J. Xue, Y. Dong, C. Huo, J. Chen, B. Han and H. Zeng, All-inorganic quantum-dot light-emitting diodes based on perovskite emitters with low turn-on voltage and high humidity stability, Journal of Materials Chemistry C 5 (18), 4565-4570 (2017).
    94. T. Chiba, K. Hoshi, Y. J. Pu, Y. Takeda, Y. Hayashi, S. Ohisa, S. Kawata and J. Kido, High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment, ACS Applied Materials & Interfaces 9 (21), 18054-18060 (2017).
    95. P. Liu, W. Chen, W. Wang, B. Xu, D. Wu, J. Hao, W. Cao, F. Fang, Y. Li, Y. Zeng, R. Pan, S. Chen, W. Cao, X. W. Sun and K. Wang, Halide-rich synthesized cesium lead bromide perovskite nanocrystals for light-emitting diodes with improved performance, Chemistry of Materials 29 (12), 5168-5173 (2017).
    96. Z. Shi, S. Li, Y. Li, H. Ji, X. Li, D. Wu, T. Xu, Y. Chen, Y. Tian, Y. Zhang, C. Shan and G. Du, Strategy of solution-processed all-inorganic heterostructure for humidity/temperature-stable perovskite quantum dot light-emitting diodes, ACS Nano 12 (2), 1462-1472 (2018).
    97. J. Song, J. Li, L. Xu, J. Li, F. Zhang, B. Han, Q. Shan and H. Zeng, Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6 % perovskite QLEDs, Advanced Materials 30 (30), 1800764 (2018).
    98. M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmuller and U. Resch-Genger, Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties, Analytical Chemistry 81, 6285-6294 (2009).
    99. U. Resch-Genger and K. Rurack, Determination of the photoluminescence quantum yield of dilute dye solutions (IUPAC Technical Report), Pure and Applied Chemistry 85 (10), 2005-2013 (2013).
    100. J. Begum, W. Day, C. Henderson, S. Purewal, J. Cerveira, H. Summers, P. Rees, D. Davies and A. Filby, A method for evaluating the use of fluorescent dyes to track proliferation in cell lines by dye dilution, Cytometry A 83 (12), 1085-1095 (2013).
    101. A. M. Brouwer, Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report), Pure and Applied Chemistry 83 (12), 2213-2228 (2011).
    102. Q. Jing, M. Zhang, X. Huang, X. Ren, P. Wang and Z. Lu, Surface passivation of mixed-halide perovskite CsPb(BrxI1-x)3 nanocrystals by selective etching for improved stability, Nanoscale 9 (22), 7391-7396 (2017).
    103. G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent and M. V. Kovalenko, Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I), Nano Letters 15 (8), 5635-5640 (2015).
    104. K. Xu, C. C. Lin, X. Xie and A. Meijerink, Efficient and stable luminescence from Mn2+ in core and core-isocrystalline shell CsPbCl3 perovskite nanocrystals, Chemistry of Materials 29 (10), 4265-4272 (2017).
    105. Q. A. Akkerman, D. Meggiolaro, Z. Dang, F. De Angelis and L. Manna, Fluorescent alloy CsPbxMn1-xI3 perovskite nanocrystals with high structural and optical stability, ACS Energy Letters 2 (9), 2183-2186 (2017).
    106. M. Koolyk, D. Amgar, S. Aharon and L. Etgar, Kinetics of cesium lead halide perovskite nanoparticle growth; focusing and de-focusing of size distribution, Nanoscale 8 (12), 6403-6409 (2016).

    無法下載圖示 全文公開日期 2024/08/13 (校內網路)
    全文公開日期 2024/08/13 (校外網路)
    全文公開日期 2024/08/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE