簡易檢索 / 詳目顯示

研究生: 陳志彰
Chih-Chang Chen
論文名稱: 高功因三相昇壓型轉換器之研製
Development of High Power Factor Three-phase Boost Converters
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
none
連國龍
Kuo-Lung Lian
王順源
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 100
中文關鍵詞: 功因三階層轉換器單週期控制
外文關鍵詞: power factor, three-level converter, one cycle control
相關次數: 點閱:163下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製具高功率因數之三相交-直流功率轉換器。藉由適當地控制開關之切換,可使輸入側達到高功因與低電流諧波。在控制策略方面,文中採用單週期直流電壓閉迴路控制及直流電壓與交流電流閉迴路控制,以穩定直流輸出電壓、有效改善電流諧波並達到高功因。由於單週期的控制方式不需要產生單位正弦訊號作為電流參考波形,故可降低控制的複雜度、簡化閉迴路調節器的設計且易於實現。另者,在直流電壓與交流電流控制迴路中,因加入了交流電流閉迴路,因此使整個系統較諸單週期直流電壓的控制更加穩定。
    本文採用32位元數位信號處理器(DSP, TMS320F28069)為系統之控制核心,且回授電壓及電流,以軟體完成閉迴路控制,故可減少電路元件,提高系統可靠度。實測結果顯示在1kW電阻性負載下,三相二階層轉換器透過直流電壓與交流電流閉迴路的控制策略,其功因、交流側電流總諧波失真率及效率分別而為0.97、6.24%及84% ;而三相三階層昇壓型轉換器在直流電壓與交流電流閉迴路控制之對應實測值則為0.98、5.45%及87%,均優於三相二階層轉換器。模擬與實驗結果印證本文系統控制策略之可行性。


    This thesis aims to develop high power factor three-phase ac-dc power converters. Properly controlling the power switching can achieve high power factor and low current harmonics on the input side. Two control strategies are proposed, namely, one cycle dc voltage as well as dc voltage and ac current closed-loop controls. By using the one cycle control, there is no need to generate unit reference sine wave for current. It can simplify the design of the closed-loop controller and result in easy implementation of the system. The difference between the above two control strategies is that the latter has an additional ac current closed-loop, causing the system control more stable.
    In this thesis, the 32 bit digital signal processor,“TMS320F28069”, is used as the core of the controller. The required closed-loop controls are mainly accomplished by voltage and current feedbacks as well as software program for the reduction of circuit components and enhancement of system reliability. The experimental results indicate that, under 1kW resistive load, the power factor, total harmonic distortion of current and efficiency are 0.97, 6.24% and 84%, respectively, for three-phase two-level boost converter with dc voltage and ac current closed-loop control. Whereas, for three-phase three-level ac-dc power converter adopting dc voltage and ac current closed-loop control yields the better corresponding measured values of 0.98, 5.45% and 87%. Both simulation and experimental results verify the feasibility of the proposed control strategy.

    中文摘要I 英文摘要II 誌  謝Ⅲ 目  錄IV 符號索引VI 圖表索引VIII 第一章 緒論1 1.1 研究動機及目的1 1.2 文獻探討4 1.3 系統架構及特色6 1.4 本文大綱8 第二章 三相二階層昇壓型轉換器之分析與控制9 2.1 前言9 2.2 三相二階層昇壓型轉換器分析9 2.3 三相二階層昇壓型轉換器控制策略22 2.3.1 二階層轉換器之直流電壓閉迴路控制23 2.3.2 二階層轉換器之直流電壓與交流電流迴路控制25 2.4 三相二階層昇壓型轉換器之模擬30 2.4.1 二階層轉換器之電壓開迴路控制模擬30 2.4.2 二階層轉換器之直流電壓與交流電流閉迴路控制 模擬33 2.5 結語36 第三章 三相三階層昇壓型轉換器之分析與控制37 3.1 前言37 3.2 三相三階層昇壓型轉換器分析37 3.3 三相三階層昇壓型轉換器控制策略50 3.3.1 三階層轉換器之直流電壓閉迴路控制51 3.3.2 三階層轉換器之直流電壓與交流電流迴路控制53 3.4 三相三階層昇壓型轉換器之模擬57 3.4.1 三階層轉換器之電壓開迴路控制模擬57 3.4.2 三階層轉換器之直流電壓與交流電流閉迴路控制 模擬60 3.5 三相二階層與三階層轉換器差異62 3.6 結語62 第四章 三相昇壓型轉換器的控制軟體及實測64 4.1 前言64 4.2 三相二階層昇壓型轉換器程式規劃65 4.3 三相三階層昇壓型轉換器程式規劃67 4.4 實測結果69 A.二階層轉換器之直流電壓與交流電流閉迴路控制實測69 B.三階層轉換器之直流電壓與交流電流閉迴路控制實測71 4.5 結語74 第五章 結論與建議75 5.1 結論75 5.2 建議76 參考文獻77 附錄A 三相全橋轉換器實測結果80 附錄B 計算機模擬程式83

    [1]X. Fan and Y. Zhou, “A new three-phase diode rectifier for aircraft variable frequency AC electrical power system”, 2011 6th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp.867-871, 2011.
    [2]C. Wang, T. Tian, and Y. Ye, “Research on three phase inverter SVPWM modulation base on FPGA”, 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), vol.2, pp.222-225, 2013.
    [3]J. Y. Ying, W. X. Dong, M. L. Liang and Y. S. Cai, “Application and simulation of SVPWM in three phase inverter”, 2011 6th International Forum on Strategic Technology (IFOST), vol, pp.541-544, 2011.
    [4]林書永,“以數位訊號處理器為基礎之三相三階層功率轉換器併聯
    系統之研製”,國立台灣科技大學電機工程所碩士論文,2007。
    [5]G. Grandi, J. Loncarski and O, Dordevic, “Analytical evaluation of output current ripple amplitude in three-phase three-level inverters”, IET Power Electronics, vol. 7, pp. 2258-2268, 2014.
    [6]S. Zhang and F. L. Luo, “A novel reference compensation current strategy for three-phase three-level unity PF rectifier”, IEEE Conference on Industrial Electronics and Applications, pp. 178-183, 2009.
    [7]A. Salem, E. M. Ahmed, M. Orabi and A. B. Abdelghani, “Reduced switches based three-phase multi-level inverter for grid integration”, 2015 6th International Renewable Energy Congress (IREC), pp. 1-6, 2015.
    [8]A. B. Abdelghani, H. R. Saligheh and G. Joos, “Space vector modulation based on classification method in three-phase multi-level voltage source inverters”, 2001 IEEE Industry Applications Conference, Vol. 1, pp. 597-602, 2001.
    [9]I. Barbi and R. Hausmann, “Three-phase multi-level DC-AC converter using three-phase, coupled inductors”, Brazilian Power Electronics Conference, pp. 332-339, 2009.
    [10]J. R. Espinoza, L. A. Moran and N. R. Zargari, “Multi-level three-phase current source inverter based series voltage compensator”, IEEE 36th Power Electronics Specialists Conference, pp. 2264-2269, 2005.
    [11]陳明宏,“交流-直流-交流功率控制器於三相雙繞組永磁式同步風力發電機系統之應用”,國立台灣科技大學電機工程所碩士論文,2007。
    [12]簡君哲,“微電網之三相變頻器並聯控制策略研製”,國立台灣科技大學電機工程所碩士論文,2012。
    [13]Y. L. Juan, “Single switch three-phase ac to dc converter with reduced voltage stress and current total harmonic distortion”, IET Power Electronics, vol. 7, pp. 1121-1126, 2014.
    [14]K. Yao, X. Ruan, C. Zou and Z. Ye, “Three-phase single-switch boost power factor correction converter with high input power factor”, IET Power Electronics, vol. 5, pp. 1095-1103, 2012.
    [15]K. Yao, Q. Meng, W. Tang and J. Lyu, “A novel control scheme of three-phase single-switch DCM boost PFC converter”, 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1881-1888, 2015.
    [16]高永昌,“全橋半控型功率轉換器於風力發電系統之應用”,國立
    台灣科技大學電機工程所碩士論文,2009。
    [17]C. Qiao and K. M. Smedley, “A general three-phase PFC controller for rectifiers with a parallel-connected dual boost topology”, IEEE Transactions on Power Electronics, vol. 17, pp. 925-934, 2002.
    [18]M. Hartmann, H. Ertl and J. W. Kolar, “Current control of three-phase rectifier systems using three independent current controller”, IEEE Transactions on Power Electronics, vol. 28, pp. 3988 – 4000, 2013.
    [19]H. Zhang and B. Tan, “Simulation research on three phase six switch PWM rectifier with one cycle control”, IEEE Second International Conference on Intelligent Computation Technology and Automation, pp. 244-247, 2009.
    [20]Y. Wnag and S. Shen, “Research on one cycle control for switching converts”, IEEE World Congress on Intelligent Control and Automation, vol. 1, pp. 74-77, 2004.
    [21]C. Qiao and K. M. Smedley, “A general three-phase PFC controller for rectifiers with a series-connected dual boost topology”, IEEE Transactions on Industry Applications, vol. 38, pp. 137-148, 2002.
    [22]S. A. Shaon and K. M. A. Salam, “Study of vienna rectifier and a highly efficient single phase two stage inverter with low THD”, International Conference on Electrical and Computer Engineering, pp. 619-622, 2014.
    [23]X. Jiang, J. Yang, J. Han and T. Tang, “A survey of cascaded multi-level pwm rectifier with vienna modules for HVDC system”, 2014 International Power Electronics and Application Conference and Exposition, pp. 72-77, 2014.
    [24]D. Mukherjee and D. Kastha, “Voltage sensorless control of the three-level three-switch Vienna rectifier with programmable input power factor”, IET Power Electronics, vol. 8, pp.1349-1357, 2015.
    [25]H. Ma, Y. Xie, Y. Yang and Z. Shi, “Voltage balance control of Vienna-type rectifier using SVPWM based On 60° coordinate system”, 2014 17th International Conference on Electrical Machines and Systems (ICEMS) , pp. 3187-3191, 2014.
    [26]Y. Li, X. Zha and L. Bu, “Discrete-time one cycle control of VIENNA rectifiers considering the dc-link neutral-point voltage balance”, 2013 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3011-3018, 2013.
    [27]W. Yao, Z. Lv, M. Zhang and Z. Lin, “A novel SVPWM for Vienna rectifier without current distortion at current zero crossing point”, IEEE International Symposium on Industrial Electronics, pp. 2349-2353, 2014.

    無法下載圖示 全文公開日期 2021/06/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE