簡易檢索 / 詳目顯示

研究生: 黃竣鴻
Jyun-Hong Huang
論文名稱: 三自由度並聯式機器人設計方法之研究
A Study on the Development of 3-DOF Parallel Manipulators
指導教授: 蔡高岳
Kao-Yueh Tsai
口試委員: 王勵群
Li-Chun Wang
石伊蓓
Yi-Bei Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 89
中文關鍵詞: 並聯式機器人三自由度
外文關鍵詞: Parallel Manipulators, 3-DOF
相關次數: 點閱:318下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

操控性、工作空間及機械效率為設計工業機器人最常用到之參考指標,而目前已有很多方法可用來搜尋具有最佳操控性、最大工作空間或是最佳機械效率之設計,本文將提出之設計方法將同時考慮到這三個因素。
以正位移分析求得三自由度並聯式機器人工作空間為最有效率之方法,但目前所有之方法皆無法直接決定工作空間之邊界,本文首先利用工作空間邊界曲面之特性提出以正位移分析來快速求得對稱型並聯式機器人工作空間之方法,提出之方法首先用來搜尋多組能夠到達指定工作範圍之設計衡量及比較這些機器人之整體等向性及機械效率以得到具有較佳運動特性之最佳設計,所提出之方法適用於各種不同類型之三自由度並聯式機器人。


Dexterity, workspace and mechanical efficiency are three of the most important criteria in designing industrial manipulators. A manipulator with optimal dexterity, workspace or mechanical efficiency can be developed by many existing methods. This work presents methods that employ all the three criteria to search for manipulators with desired properties.
Direct kinematics is an efficient way to develop the workspace of a 3-DOF parallel manipulator, but the existing methods cannot directly obtain the boundary of the workspace. Using the characteristics of workspace boundaries and direct kinematics, the proposed methods can efficiently determine the boundary of a workspace. The methods are first employed to search for several isotropic designs with a specified workspace. The global isotropy and mechanical efficiency are then evaluated and compared in order to develop the design with better kinematic properties. The methods are applicable to different types of 3-DOF parallel manipulators.

中文摘要 I Abstract II 誌謝 III 目錄 IV 圖表索引 VII 第一章 前言 1 1.1研究動機 1 1.2文獻回顧 2 1.3文章架構 4 第二章 理論基礎 6 2.1 Denavit-Hartenberg 連桿參數 6 2.2 Denavit-Hartenberg 齊次轉換矩陣 7 2.3 條件數 8 2.4 二分法 9 2.5 螺旋理論 10 第三章 三自由度並聯式機器人運動空間 13 3.1 工作空間邊界曲面之特性 13 3.2求解邊界曲面及工作空間 18 3.3 連桿參數及正位移分析 20 3.3.1 RPS及RRS構型 20 3.3.2 Delta構型 23 3.4 數值範例 25 3.4.1 3-RPS機器人 25 3.4.2 3-RRS機器人 28 3.4.3 Delta機器人 31 3.5 小結 34 第四章 並聯式機器人工作空間操控性與機械效率之分析 35 4.1 等向性設計 35 4.2 操控性曲面 43 4.3 靜力分析 49 4.3.1 3-RPS並聯式機器人 49 4.3.2 3-RRR Delta型機器人 51 4.4 較佳設計 54 4.4.1 RPS並聯式機器人 54 4.4.2 Delta機器人 60 4.5小結 66 第五章 結論與未來方向 67 參考文獻 69 附錄A 反位移分析求得3-DOF並聯式機器人邊界曲面之方法 71 附錄B 3-RPS並聯式機器人賈式矩陣 75

[1] 黃成凱, “並聯式及多餘軸機器人之運動學, 操控性及工作空間之研究,” 2016.
[2] E. F. Fichter, “STEWART PLATFORM-BASED MANIPULATOR: GENERAL THEORY AND PRACTICAL CONSTRUCTION,” International Journal of Robotics Research, vol. 5, no. 2, pp. 157-182, 1986.
[3] C. M. Luh, F. A. Adkins, E. J. Haug, and C. C. Qiu, “Working capability analysis of Stewart platforms,” Journal of Mechanical Design, vol. 118, no. 2, pp. 220-227, Jun, 1996.
[4] M. Z. Huang, and J. L. Thebert, “A study of workspace and singularity characteristics for design of 3-DOF planar parallel robots,” International Journal of Advanced Manufacturing Technology, vol. 51, no. 5-8, pp. 789-797, Nov, 2010.
[5] L.-W. Tsai, G. C. Walsh, and R. E. Stamper, "Kinematics of a novel three DOF translational platform." pp. 3446-3451.
[6] X. Kong, and C. M. Gosselin, “Kinematics and singularity analysis of a novel type of 3-CRR 3-DOF translational parallel manipulator,” The International Journal of Robotics Research, vol. 21, no. 9, pp. 791-798, 2002.
[7] Y. Lu, Y. Shi, and B. Hu, “Kinematic analysis of two novel 3UPU I and 3UPU II PKMs,” Robotics and Autonomous Systems, vol. 56, no. 4, pp. 296-305, 2008.
[8] K. Tsai, T. Lee, and Y. Jang, “A new class of isotropic generators for developing 6-DOF isotropic manipulators,” Robotica, vol. 26, no. 05, pp. 619-625, 2008.
[9] M. V. Kircanski, "Robotic isotropy and optimal robot design of planar manipulators." pp. 1100-1105.
[10] G. Gogu, "Fully-isotropic over-constrained planar parallel manipulators." pp. 3519-3524.
[11] A. Fattah, and A. Hasan Ghasemi, “Isotropic design of spatial parallel manipulators,” The International Journal of Robotics Research, vol. 21, no. 9, pp. 811-824, 2002.
[12] C.-H. Kuo, and J. S. Dai, "A Fully-Isotropic Parallel Orientation Mechanism." pp. 1-7.
[13] L.-W. Tsai, and S. Joshi, “Kinematics and optimization of a spatial 3-UPU parallel manipulator,” Journal of Mechanical Design, vol. 122, no. 4, pp. 439-446, 2000.
[14] X. Wang, L. Baron, and G. Cloutier, "Kinematic modelling and isotropic conditions of a family of translational parallel manipulators." pp. 173-177.
[15] X.-J. Liu, Z.-L. Jin, and F. Gao, “Optimum design of 3-DOF spherical parallel manipulators with respect to the conditioning and stiffness indices,” Mechanism and machine Theory, vol. 35, no. 9, pp. 1257-1267, 2000.
[16] X.-J. Liu, J. Wang, and H.-J. Zheng, “Optimum design of the 5R symmetrical parallel manipulator with a surrounded and good-condition workspace,” Robotics and Autonomous Systems, vol. 54, no. 3, pp. 221-233, 2006.
[17] 余汯育, “機器人操控性曲面及應用,” 2009.
[18] C. M. Gosselin, “Static balancing of spherical 3-DOF parallel mechanisms and manipulators,” The International Journal of Robotics Research, vol. 18, no. 8, pp. 819-829, 1999.
[19] T. Laliberté, C. M. Gosselin, and M. Jean, “Static balancing of 3-DOF planar parallel mechanisms,” IEEE/ASME transactions on mechatronics, vol. 4, no. 4, pp. 363-377, 1999.
[20] V. Parenti-Castelli, R. D. Gregorio, and F. Bubani, “Workspace and Optimal Design of a Pure Translation Parallel Manipulator,” Meccanica, vol. 35, no. 3, pp. 203-214, 2000.
[21] R. Di Gregorio, “Statics and singularity loci of the 3-UPU wrist,” IEEE Transactions on Robotics, vol. 20, no. 4, pp. 630-635, 2004.
[22] J. Gallardo, J. M. Rico, A. Frisoli, D. Checcacci, and M. Bergamasco, “Dynamics of parallel manipulators by means of screw theory,” Mechanism and Machine Theory, vol. 38, no. 11, pp. 1113-1131, 11//, 2003.
[23] 王暄瑜, “三自由度並聯式機器人之操控性分析及比較,” 2014.
[24] S. Staicu, “Recursive modelling in dynamics of Delta parallel robot,” Robotica, vol. 27, no. 02, pp. 199-207, 2009.

QR CODE