簡易檢索 / 詳目顯示

研究生: 牛膺捷
Ing-Chieh Niu
論文名稱: 半透光膜輔助準分子雷射結晶化與矽單晶粒薄膜電晶體開發
Light Absorptive Underlayer Assisted Excimer Laser Crystallization and Its Application to Si Single-Grain Thin Film Transistors
指導教授: 葉文昌
Wen-chang Yeh
口試委員: 黃鶯聲
Ying-sheng Huang 
李奎毅
Kuei-yi Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 48
中文關鍵詞: 半透光層晶粒定位技術薄膜電晶體
外文關鍵詞: Light absorptive film, Location control of Si grains
相關次數: 點閱:169下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究半透光膜輔助矽膜雷射長晶,在Si (90 nm)/SiO2 (100 nm)/SiONx (1200 nm),α=15000 cm-1條件下,成功得到20 µm的矽晶粒,並利用拉曼系統(Raman system)與原子力顯微鏡(Atomic Force Microscope, AFM)分析得到矽膜的結晶性以及晶粒內部結晶性與表面粗糙度。接著以此晶粒增大技術配合微融熔種晶成長技術來實現晶粒定位技術,並得到直徑8 μm、週期10 μm之晶粒陣列,最後試將TFT通道層製作於單顆直徑大小為8 µm的矽晶粒陣列中。


In this paper, we make a study of the Light Absorptive (LA) film, and use the LA film to assist crystallizing Si grains in excimer laser annealing process. At Si (90 nm)/SiO2 (100 nm)/SiONx (1200 nm) structure, we can obtain the disc grain which diameter is about 20 μm. And we also use Raman system and AFM to measure the crystallization and surface roughness of Si film and disc grain. Then location control of Si grains array was realized by using the enlargement of disc grain size technique and partial melting seed growth technique. And we can obtain the disc grain array which period is 10 μm and each of grain’s diameter is 8 μm. Finally, we try to fabricate TFT’s channel within one grain in those grain array.

第一章 序論 1-1 前言......................................... ﹝1﹞ 1-2 準分子雷射結晶化............................ ﹝3﹞ 1-3 金氧半場效電晶體介紹........................ ﹝7﹞ 1-4 研究背景………….……………………………… ﹝8﹞ 1-5 論文流程………….……………………………… ﹝9﹞ 第二章 矽膜之半透光膜輔助雷射長晶最佳化 2-1 前言……………….……………………………… ﹝10﹞ 2-2 實驗方法………….……………………………… ﹝11﹞ 2-3 實驗結果…………………………………………. ﹝16﹞ 2-3.1 半透光膜結構對矽膜雷射長晶影響……………. ﹝16﹞ 2-3.2 大粒徑矽晶粒之拉曼與AFM量測…………….. ﹝21﹞ 2-4 結論…...………………………………………….. ﹝24﹞ 第三章 單晶矽晶粒之薄膜電晶體開發 3-1 前言……………….……………………………… ﹝25﹞ 3-2 實驗方法………….……………………………… ﹝26﹞ 3-2.1 微透鏡陣列輔助晶粒定位………………………. ﹝26﹞ 3-2.2 定義矽島並沉積閘極絕緣膜與金屬閘極………. ﹝27﹞ 3-2.3 對矽島進行源極、汲極摻雜……………………. ﹝30﹞ 3-2.4 蝕刻出接觸點並蒸鍍鋁電極與氫化……………. ﹝32﹞ 3-3 實驗結果…...…………………………………….. ﹝34﹞ 3-3.1 半透光膜參數選擇………………………………. ﹝34﹞ 3-3.2 微透鏡陣列輔助矽膜晶粒定位…………………. ﹝34﹞ 3-3.3 矽膜黃光製程後矽島蝕刻………………………. ﹝37﹞ 3-3.4 閘極絕緣膜與閘極金屬沉積……………………. ﹝38﹞ 3-3.5 離子佈植與雷射退火……………………………. ﹝41﹞ 3-3.6 蝕刻接觸點與氫化………………………………. ﹝42﹞ 3-3.7 元件量測…………………………………………. ﹝44﹞ 3-4 結論..…………………………………………….. ﹝45﹞ 第四章 總結 ........................................... ﹝46﹞ 參考文獻………………………………………………………. ﹝47﹞

[1] M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, “Poly-silicon TFT technology for active matrix OLED displays”, IEEE Electron Device Letters, Vol.48, pp.845-851 (2001).
[2] S. D. Brotherton, J. R. Ayres, and M. J. Trainor, “Control and analysis of leakage currents in poly-Si thin-film transistors”, J. Appl. Phys., Vol.79, No.2, pp.895-897 (2006).
[3] L. Xu and P. Grigoropoulos, “High-performance thin-silicon-film transistors fabricated by double laser crystallization”, J. Appl. Phys., Vol.99, 034508 1-5 (2006).
[4] R. Mizuki, T. Matsuda, J. S. Nakamura, Y. Takagi, and J. Yoshida, “Large domains of continuous grain silicon on glass substrate for high-performance TFTs”, IEEE Electron Device Letters, Vol.51, pp.204-211 (2004).
[5] J. S. Im and H. J. Kim, “Phase transformation mechanisms involved in Excimer laser crystallization of amorphous silicon films”, Appl. Phys. Lett., Vol.63, No.14, pp.1969-1971 (1993).
[6] Y. Takemura and O. Kanagawa, “Method of fabricating a TFT”, United States Patent, Vol.437, pp.40-44 (1995).
[7] K. C. Smith, and A. S. Sedra, “Microelectronic circuits”, Fourth Edition, pp.356-367, Oxford University Press, Inc. (1998).
[8] R. S. Sposili and J. S. Im, ”Sequential lateral solidification of thin silicon films on SiO2“, Appl. Phys. Lett., Vol.69, No.19, pp.2864 -2866 (1996).
[9] C. Oh, M. Ozawa, and M. Matsumura, “A novel Phase-Modulated Excimer-Laser crystallization method of silicon thin films”, Jpn. J. Appl. Phys., Vol.37, No.5A, pp.492-495 (1998).
[10] R. Vikas and R. Ishihara, “Capping layer on thin Si film for µ-Czochralski process with Excimer laser crystallization”, Jpn. J. Appl. Phys., Vol.45, No.5B, pp.4340-4343 (2003).
[11] W. Yeh and D. Ke, “Location control of super-lateral-growth grains in Excimer laser crystallization of silicon thin films by microlight beam seeding”, Jpn. J. Appl. Phys., Vol.45, No.36, pp.L970-L972 (2006).
[12] W. Yeh, C. Zhuang, and D. Ke, “Growth rate measurement of lateral grains in silicon film during Excimer laser annealing”, Jpn. J. Appl. Phys., Vol.46, No.25, pp.L611-L613 (2007).
[13] W. Yeh, H. Huang, I. Niu, and C. Chen “Light absorptive underlayer enhanced superlateral growth in Excimer laser crystallization of amorphous silicon film”, Jpn. J. Appl. Phys, Vol.46, No.4A, pp.1466-1468 (2007).

QR CODE