簡易檢索 / 詳目顯示

研究生: 高嘉維
Chia-wei Kao
論文名稱: 利用表面光電壓光譜、光激螢光光譜及螢光激發光譜探討覆蓋砷化銦鎵層在砷化銦量子點之特性
Surface photovoltage spectroscopy, photoluminescence, and photoluminescence excitation characterization of InAs/GaAs quantum dots structures with InxGa1-xAs over grown layer
指導教授: 黃鶯聲
Ying-Sheng Huang
口試委員: 陳永芳
none
孫澄源
none
程光蛟
none
樂錦盛
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 54
中文關鍵詞: 表面光電壓光譜光激螢光光譜螢光激發光譜
外文關鍵詞: Surface photovoltage spectroscopy, photoluminescence, photoluminescence excitation
相關次數: 點閱:301下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

我們利用表面光電壓光譜(SPS)、光激螢光激發光譜(PL)及螢光激發光譜(PLE)三種量測方式來探討由固態源分子束磊晶(SSMBE)所組成的砷化銦/砷化鎵量子點結構中有無覆蓋砷化銦鎵層的光學特性。利用此三種量測方式,我們可以清楚的觀察到砷化銦量子點的基態和激發態的訊號、濕層、砷化銦鎵層和砷化鎵層的訊號。至於有關砷化銦鎵層的訊號可由砷化銦濕層及砷化銦鎵所組成量子井系統中可得知,並利用模擬的結果加以證實。此外,亦可利用濕層訊號有無產生能帶分裂來證明砷化銦鎵層有減少應力產生的作用。而量子點訊號基態及激發態的紅移則為應力分佈的改變及量子點的尺寸變大所造成。最後則利用Varshni 經驗式吻合分析各躍遷訊號對溫度的變化求出Varshni parameters;而由量子點訊號之較低的α值證實量子點躍遷能階對溫度的變化較為穩定的特性。此外從本文中我們可以得知SPS的量測技術可與PLE互補且為非破壞性的量測方式,是一種可用來檢測量子點結構樣品的利器。


Surface photovoltage spectroscopy (SPS), photoluminescence (PL) and photoluminescence excitation (PLE) techniques have been used to characterize the self-assembled InAs/GaAs quantum dots (QDs) structures with and without InGaAs overgrown layers grown by solid source molecular beam epitaxy (SSMBE). Signals from barrier, wetting layer (WL), overgrown layer, ground state and excited states of the QDs have been observed and identified. The effects of the InGaAs overgrowth layer have been studied in detail. The information on the decomposition of the InGaAs layer has been obtained from the electronic transition properties of the quantum well (QW) formed by the InAs WL and the InGaAs layer.
The effects of the InGaAs overgrowth layer have been studied in detail. The observed reduction in the energy splitting in the energy splitting of the heave- and light-hole in the wetting layer indicate a partial strain relaxation due to the InGaAs overgrown layer. The red shifts of the ground state and excited states transition energies of QDs have been attributed to the altered strain distribution and increase of QD size. The optical properties of the InAs QDs, WL, QW, and GaAs were studied with the fitting parameters using Varshni’s equation. The SPS has been shown to be a complementary technique to PL and PLE, and can be used for nondestructive characterization of self-assembled QDs structures.

中文摘要I 英文摘要III 致 謝IV 目 錄V 圖 索 引VII 表 索 引IX 第一章緒論 1 1.1 文獻回顧1 1.2 研究動機與目的3 第二章量子點的特性介紹及樣品結構 5 2.1量子點的形成機制及特性簡介5 2.2樣品介紹10 2.3研究主題11 第三章 實驗方法及原理16 3.1表面光電壓光譜量測(SPS)16 3.1.1表面光電壓實驗原理16 3.1.2表面光電壓實驗方法與實驗系統17 3.2光激發螢光光譜(PL)18 3.2.1光激發螢光實驗原理18 3.2.2光激發螢光實驗方法及實驗系統19 3.3螢光激發光譜(PLE)19 3.3.1螢光激發光譜實驗原理19 3.3.2螢光激發光譜實驗方法及系統20 第四章 結果與討論25 4.1室溫與隨溫度變化之表面光電壓光譜量測分析25 4.1.1隨溫度變化之表面光電壓光譜量測分析26 4.2室溫與隨溫度變化之光激發螢光光譜分析27 4.2.1室溫下之光激發螢光光譜量測分析27 4.2.2隨溫度變化之光激發螢光光譜量測分析27 4.3隨溫度變化之螢光激發光譜量測分析28 第五章 結論45 參考文獻47 作者簡介54

[1]Y. Arakawa, and H. Sakaki, “Multidimensional quantum well laser. and temperature dependence of its threshold current”, Appl. Phys. Lett., Vol. 40, No. 11, pp.939-941(1982).

[2]A. I. Ekimov, Al. L. Efros, and A. A. Onushchenko, “Quantum size effect in semiconductor microcrystals”, Sol. State Comm., Vol. 56, No. 2, pp.921-923 (1985).

[3]E. Kapon, D. M. Hwang, and R. Bhat, “Stimulated emission in semiconductor quantum wire heterostructures”, Phys. Rev. Lett., Vol. 63, No. 5, pp.430-432 (1989).

[4]D. J. Eaglesham and M. Cerullo, “Dislocation-free Stranski-Krastanow growth of Ge on Si(100)”, Phys. Rev. Lett., Vol. 64, No. 2, pp.1943-1945 (1990).

[5]J. Y. Marzin, J. M. Gerard, A. Izrael, D. Barrier, and G. Bastard, “Photoluminescence of Single InAs Quantum Dots Obtained by Self-Organized Growth on GaAs”, Phys. Rev. Lett., Vol. 73, No. 5, pp.716-719(1994).

[6]M. Grundmann, O. Stier, D. Bimberg, “InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure”, Phy. Rev. B, Vol. 52, No. 1, pp.11969-11972 (1995).

[7]M. Grundmann, N. N. Ledentstov, O. Stier, J. Bohrer, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, “Nature of optical transitions in self-organized InAs/GaAs quantum dots”, Phy. Rev. B, Vol. 53, No. 6, pp.10509-10513 (1996).

[8]L. Jacak, P. Hawrylak, Quantum dots, Spreinger Verlag, Berlin, pp .172-178 (1998).

[9]林昀靚,「 InGaAs/GaAs(111)與InAs/GaAs(100)量子點之螢光光譜分析」,成功大學物理所博士論文,第77~84頁,民國九十四年。

[10]Eui-Tai Kim, Zhonghui Chen, and Anupam Madhukar, “Selective manipulation of InAs quantum dot electronic states using a lateral potential confinement layer”, Appl. Phys. Lett., Vol. 81, No. 9 pp.3473-3476 (2002).

[11]H. S. Lee, J. Y. Lee, and T. W. Kim, “Dependence of the optical properties on the temperatures in multiple-stacked InAs/GaAs quantum dots grown on GaAs (001) substrates”, J. Cryst. Growth, Vol. 258, No. 2, pp.256-260 (2003).

[12]F. C. Frank, and J. H. van der Merwe, “One-dimensional dislocations”, Proc. Roy. Soc. London A, Vol. 198, No. 3, pp.205-207 (1949).

[13]M. Volmer and A. Weber, ”Keimbildung in Ubersattigten Gebilden”, Z. Phys. Chem, Vol. 119, No. 4, pp.227-231 (1926).

[14]I. Stranski and L. Krastanov, “Zur Theorie der Orientierten Ausscheidung von Ionenkristallen Aufeinander”, Sitz. Ber. Akad. Wiss. Wein. Vol. 146, pp.797-799 (1938).

[15]E. Borovitskaya, M. S. Shur, Quantum dots, World Scientific, New York, pp.48-49 (2002).

[16]M. Kaus, and N. Kobayashi, “Equilibrium multiatomic step structure of GaAs(QQ1) vicinal surfaces grown by metalorganic chemical vapor deposition”, Appl. Phys. Lett., Vol. 62, No. 11, pp.1262-1264 (1993).

[17]D. C. Liu, and C. P. Lee, “Novel fabrication technique towards quantum dots”, Appl. Phys. Lett., Vol. 63, No. 25, pp.3503-3505(1993).

[18]Y. Nagamune, M. Nishioka, S. Tsukamoto, and Y. Arakawa, “GaAs quantum dots with lateral dimension of 25 nm fabricated by selective metalorganic chemical vapor deposition growth”, Appl. Phys. Lett. , Vol. 64, No. 19, pp.2495-2497(1994).

[19]Y. Naqamune, M. Nishioka, S. Tsukamoto, and Y. Arakawa, “Optical properties of GaAs quantum dots fabricated by MOCVD selective growth”, Solid-State Electron., Vol. 37, No. 4-6, pp.579-581(1994).

[20]T. Inokuma, T. Arai, and M. Ishikawa, “Size effects on the temporal dynamics of edge emission in CdSe microcrystals embedded in a germanate glass matrix”, Phys. Rev. B, Vol. 42, No. 17, pp.11093-11098(1990).

[21]I. Markichev, E. Sheka, I. Natkaniec, A. Muzychka, V. Khavryutchenko, Y. Wang, and N. Herron, “Density of vibrational states of thiol capped CdS particles. Inelastic neutron scattering”, Phys. B:Condensed Matter, Vol. 198, No. 1-3, pp.197-199 (1994) .

[22]Y. Wang, and N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties”, J. Phys. Chem., Vol. 95, No. 2, pp.525-532(1991).

[23]Y. Kayanuma, and K. kuroda, “Quantum Size Effect of Excitonic Molecules in CuCl Microcrystals”, Appl. Phys. A:Solids and Surfaces, Vol. 53, No. 6, pp.475-479 (1991) .

[24]J. Y. Marzin, J. M. Gerard, A. Izrael, D. Barrier, and G. Bastard, “Photoluminescence of Single InAs Quantum Dots Obtained by Self-Organized Growth on GaAs”, Phys. Rev. Lett., Vol. 73, No. 5, pp.716-719(1994).

[25]X. Qianghua, A. Konkar, A. Kalburge, T. R. Ramachandran, P. Chen, R. Cartland, A. Madhukar, H. T. Lin, and D. H. Rich, “Structural and optical behavior of strained InAs quantum boxes grown on planar and patterned GaAs (100) substrates by molecular-beam epitaxy”, J. Vac. Sci. Techol. B, Vol. 13, No. 2, pp.642-645(1995).

[26]D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaar, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces”, Appl. Phys. Lett., Vol. 63, No. 23, pp.3203-3205(1993).

[27]F. Heinrichsdorff, A. Krost, M. Grundmann, D. Bimberg, A. Kosogov, and P. Werner, “Self-organization processes of InGaAs/GaAs quantum dots grown by metalorganic chemical vapor deposition”, Appl. Phys. Lett., Vol. 68, No. 23, pp.3284-3286(1996).

[28]B. R. Bennett, R. Magno, and B. V. Shanabrook, “Molecular beam epitaxial growth of InSb, GaSb, and AlSb nanometer-scale dots on GaAs”, Appl. Phys. Lett., Vol. 68, No. 4, pp.505-507(1996).

[29]W. Seifert, A. Carlsson, A. Petersson, L. E. Wernersson, and L. Samuelson, “Alignment of InP Stranski-Krastanow dots by growth on patterned GaAs/GalnP surfaces”, Appl. Phys. Lett., Vol. 68, No. 12, pp.1684-1686(1996).

[30]S. Fafard, Z. Wasilewski, J. Mccaffrey, S. Raymond, and S. Charbonneau, “InAs self-assembled quantum dots on InP by molecular beam epitaxy”, Appl. Phys. Lett., Vol. 68, No. 7, pp.991-993(1996).

[31]J. Groenen, A. Mlayah, R. Carles, A. Ponchet, A. L. Corre, and S. Salaun, “Strain in InAs islands grown on InP(001) analyzed by Raman spectroscopy”, Appl. Phys. Lett., Vol. 69, No. 7, pp.943-945(1996).

[32]詹國禎, 「砷化銦量子點的光電性質」, 物理雙月刊, 第廿十五卷, 第三期, 第383〜389頁, 民國九十二年。

[33]M. V. Maxmov, L. V. Asryan, Y. M. Shernyakov, A. F. Tsatulinikov, I. N. Kaiauder, V. V. Nikolaev, A. R. Kovsh, S. S. Mikkin, V. M. Zhukov, Z. I. Alferov, N. N. Ledenstov, and D. Bimberg, “1.55 μm emission from InAs quantum dots grown on GaAs”, IEEE J. Sel. Top. Quantum Electron, Vol. 37, No. 5, pp.676-683(2001).

[34]Y. Shapira, L. J. Brillson, and A. Heller, “Origin of surface and metal-induced interface states in InP”, Phys. Rev. B, Vol. 29, No. 12, pp.6824-6832(1984).

[35]N. Bachrach-Ashkenasy, N. L. Kronik, Y. Rosenwaks, M. C. Hanna, M. Leibovitch, and P. Ram, “Surface photovoltage spectroscopy of quantum wells and superlattices”, Appl. Phys. Lett., Vol. 68, No. 7, pp.879-891(1996).

[36]L. Aigoui, F. H. Pollak, T. J. Petruzello, and K. Shahzad, “Observation of excitonic features in ZnSe/ZnMgSSe multiple quantum wells by normalized Kelvin probe spectroscopy at low temperatures”, Solid State Comm., Vol. 102, No. 12, pp.877-882(1997).

[37]B. Mishori, M. Leibovitch, Y. Shapira, F. H. Pollak, D. C. Streit, and M. Woitowicz, “Surface photovoltage spectroscopy of a GaAs/AlGaAs heterojunction bipolar transistor”, Appl. Phys. Lett., Vol. 73 , No. 5, pp.650-652(1998).

[38]M. Cardona, in Solid State physics, Academic press, New York, pp.105-112(1969).

[39]P. Lorrain, and D. R. Corson, Electromagnetic Fields and Waves, W. H. Freeman, San Francisco, pp.508-511(1972).

[40]K. J. Moore, G. Duggan, K. Woodbridge, and C. Roberts, “Observations and calculations of the exciton binding energy in (In,Ga)As/GaAs strained-quantum-well heterostructures”, Phys. Rev. B, Vol. 41, No. 2, pp.1090-1094(1990).

[41]H. Shen, M. Dutta, and R. Lux, “Dynamics of photoreflectance from undoped GaAs”, Appl. Phys. Lett., Vol. 59, No. 3, pp.321-323(1991).

[42]H. Born, R. Heitz, A. Homann, and D. Bimberg, “Tuned exciton kinetics in self-organized InGaAs/GaAs quantum dots”, Phys. E, Vol. 13, No. 2, pp.233-236 (2002).

[43]J. S. Wang, G. Lin, R. S. Hsiao, C. S. Yang, C. M. Lai, C. Y. Liang, H. Y. Liu, T. T. Chen, Y. F. Chen, J. Y. Chi, and J. F. Chen, “Continuous-wave high-power (320 mW) single mode operation of electronic vertically coupled InAs/GaAs quantum dot narrow-ridge-waveguide lasers”, Appl. Phys. B, Vol. 81, No. 5, pp.1097-1100 (2005).

[44]C. H. Wu, Y. G. Lin, S. L. Tyan, S. D. Lin, and C. P. Lee, “An Investigation of Quantum States in Ultra-Small InAs/GaAs Quantum Dots by Means of Photoluminescence”, Chinese J. Phys., Vol. 43, No. 4, pp.847-855 (2005).

[45]O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band k∙p theory”, Phys. Rev. B, Vol. 59, No. 4, pp.5688-5701 (1999).

[46]H. Y. Liu, X. D. Wang, J. Wu, B. Xu, Y. Q. Wei, W. H. Jiang, D. Ding, X. L. Ye, F. Lin, J. F. Zhang, J. B. Liang, and Z. G. Wang, “Structural and optical properties of self-assembled InAs/GaAs quantum dots covered by In(subx)Ga(sub1-x)As (O is less than or equal to x is less than or equal to 0.3)”, J. Appl. Phys., Vol. 88, No. 6, pp.3392-3395 (2000).

[47]F. Adler, M. Geiger, A. Bauknecht, D. Haase, P. Ernst, A. Dörnen, F. Scholz, and H. Schweizer, “Self-assembled InAs/GaAs quantaum dots under resonant excitation”, J. Appl. Phys., Vol. 83, No. 3, pp.1631-1636 (1998).

[48]H. Y. Liu, X. D. Wang, B. Xu, D. Ding, W. H. Jiang, J. Wu, and Z. G. Wang, “Effect of In-mole-fraction in InGaAs overgrowth layer on self-assembled InAs/GaAs quantum dots”, J. Cryst. Growth, Vol. 213, No. 3, pp.193-197 (2000).

[49]F. Guffarth, R. Heitz, A. Schliwa, O. Stier, A. R. Kovsh, V. Ustinov, N. N. Ledentsov, and D. Bimberg, “Electronic Properties of InAs/GaAs Quantum Dots Covered by an InxGa1-xAs Quantum Well”, Phys. Stat. Sol. (b), Vol. 224, No. 1, pp.61-65 (2001).

[50]R. Heitz, I. Mukhametzhanov, A. Madhukar, A. Hoffmann, and D. Bimberg, “Temperature dependent optical properties of self organized InAs/GaAs quantum dots”, J. Electronic Materials, Vol. 28, No. 5, pp.520-527 (1999).

[51]H. Shen, S. H. Pan, Z. Hang, J. Leng, and F. Pollak, “Photoreflectance of GaAs and Ga0.82Al0.18As at elevated temperatures up to 600 °C”, Appl. Phys. Lett., Vol. 53, No. 12, pp.1080-1082 (1988).

QR CODE