簡易檢索 / 詳目顯示

研究生: 郭育如
YU-JU KUO
論文名稱: 評估三氟甲基聯苯作為新型共軛高分子其拉電子基團的能力
Evaluation of 2,2’-Bistrifluoromethylbiphenyl as the Electron-withdrawing Moiety in Novel Conjugated Polymers Containing Carbazole or Triphenylamine
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 劉貴生
Guey-Sheng Liou
蕭勝輝
Sheng-Huei Hsiao
陳燿騰
Yaw-Terng Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 90
中文關鍵詞: 共軛高分子能量轉移拉電子基團
外文關鍵詞: conjugated polymers, energy transfer, electron-withdrawing moiety
相關次數: 點閱:235下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇研究是利用Horner-Emmons反應合成含有推電子基團(carbazole或triphenylamine)以及新型拉電子基團(三氟甲基聯苯)的共軛高分子PC系列和PT系列。由熱分析儀顯示,PC系列和PT系列的5%熱重損失溫度皆大於400 ℃,且玻璃轉移溫度介在170 ℃和233 ℃之間,顯示極佳的熱穩定性。在光學性質上面,溶液態之最大吸收波長和最大放光波長分別介在295~412 nm和391~477 nm之間,薄膜態之最大吸收波長和最大放光波長分別介在283~401 nm和450~479 nm之間,而量子效率(ΦPL)則為39~88 %。其中,PC10觀察到CF3BP-CBZ之交替鏈段(CF3BP-CBZ-alternating segment)與CF3BP之團接鏈段(CF3BP-blocking segment)之間會有部分能量轉移。而PT10觀察到CF3BP-TPA之交替鏈段(CF3BP-TPA-alternating segment)與CF3BP之團接鏈段(CF3BP-blocking segment)之間會有部分能量轉移。另外在電化學性質方面,PC系列和PT系列的HOMO與LUMO能階分別為-5.27~-5.57 eV和-2.97~-3.17 eV。這些數據與一般含carbazole和triphenylamine的PPV相比,皆有較低的數值,即代表導入三氟甲基聯苯的拉電子結構,確實能有效降低HOMO和LUMO值。而再與其它含有拉電子基團的共軛高分子作比較,三氟甲基聯苯的拉電子能力比pyridine、1,3,4-oxadiazole、2,1,3-benzothiadiazole、cyano強。而PLED元件構形為ITO/PEDOT:PSS/PC or PT/LiF/Ca/Al,PC系列之中以PC50的效率最佳,驅動電壓為5.0 V,最大亮度可達696 cd/m2,最大亮度效率為1.45 cd/A。PT系列之中以PT50的效率最佳,驅動電壓為3.8 V,最大亮度可達1003 cd/m2,最大亮度效率為2.95 cd/A。而兩系列中隨著三氟甲基聯苯的含量增加,其電子移動率也提升。由以上的結果可以推論,本研究室開發的三氟甲基聯苯結構確實可以作為一種新的拉電子基團,而且在調控共軛高分子的能階、能隙及載子移動率上,三氟甲基聯苯結構也是一個新的選擇。


Novel conjugated polymers, PC and PT, containing electron-withdrawing trifluoromethyl group at 2 and 2’ positions of biphenyl moiety (CF3BP) and carbazole (CBZ) and triphenylamine (TPA) were synthesized by Horner-Emmons reaction. These polymers exhibited good thermal stability with glass transition temperatures ranging from 170 ℃ and 233 ℃, and 5 % decomposition temperatures higher than 400 ℃. The UV-visible absorption peaks were between 295 and 412 nm, and emission peaks were between 391 and 477 nm in solution states. Quantum efficiency(ΦPL) were between 39 and 88 %. Energy transfer phenomenon was observed in solution states of PC10 between CF3BP-CBZ-alternating segment and CF3BP-blocking segment, and PT10 between CF3BP- TPA -alternating segment and CF3BP-blocking segment. The cyclic voltammetric studies revealed that polymers had low HOMO (-5.27~-5.57 eV) and LUMO (-2.97~-3.17 eV) compared with carbazole- and triphenylamine-containing PPVs due to the presence of strong electron-withdrawing trifluoromethyl group. It was also observed the trifluoromethyl-substituted biphenyl (CF3BP) moiety was a stronger electron-withdrawing group than pyridine, 1,3,4-oxadiazole, 2,1,3-benzothiadiazole and cyano moieties. The PLED’s configuration is ITO/PEDOT:PSS/PC or PT/LiF/Ca/Al. In the conjugated polymers, PC, PC50 show the best performance. The turn-on voltage at 5.0 V, maximum luminance and maximum luminance efficiency are 696 cd/m2 and 1.45 cd/A, respectively. In the conjugated polymers, PT, PT50 show the best performance. The turn-on voltage at 3.8 V, maximum luminance and maximum luminance efficiency are 1003 cd/m2 and 2.95 cd/A, respectively. As the trifluoromethyl-substituted biphenyl (CF3BP) increased, the electron mobility enhanced. It indicted that the trifluoromethyl-substituted biphenyl (CF3BP) moiety can be a new candidate as the electron-withdrawing moiety to adjust the HOMO, LUMO energy levels and energy gaps of conjugated polymers.

摘要 I Abstract II~III 致謝 IV 目錄 V~VI Figure 索引 VII~IX Scheme 索引 X Table 索引 XI 第一章 緒論 1 1-1 前言 1 1-2 共軛高分子 1 1-2-1 共軛高分子之起源 1 1-2-2 共軛高分子之導電理論 2 1-2-3 螢光理論 2 1-3 有機電致發光 5 1-3-1 有機電致發光的發展歷程 5 1-3-2 有機發光二極體元件的結構 6 1-3-3 發光原理 8 1-4 電致變色 8 1-4-1 電致變色的發展歷程 8 1-4-2 電致變色原理 8 1-4-3 電致變色元件之性能要求 9 1-4-4 電致變色元件基本構造 9 1-4-5 電致變色元件之應用 10 1-5 文獻回顧 12 1-6 研究動機 19 第二章 實驗部分 20 2-1 實驗藥品 20 2-2 實驗儀器 22 2-3 單體製備流程 23 2-4 高分子合成 29 2-5 高分子薄膜製備 32 2-6 元件製作 32 2-6-1 PLED元件製備 32 2-6-2 OFET元件製備 33 第三章 結果與討論 34 3-1 合成與表徵 34 3-1-1 單體合成與表徵 34 3-1-2 高分子合成與表徵 42 3-2 熱學性質 46 3-3 光學性質 48 3-4 電化學性質 59 3-5 電致變色性質 63 3-6 元件性質 68 第四章 結論 75 參考文獻 76

1. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ. J Chem Soc Chem Commun 1977;1977(16):578-80.
2. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB. Nature 1990;347(6293):539-41.
3. Morin JF, Leclerc M. Macromolecules 2002;35(22):8413-7.
4. Cho NS, Park JH, Lee SK, Lee J, Shim HK, Park MJ, Hwang DH, Jung BJ. Macromolecules 2005;39(1):177-83.
5. Hou J, Tan Z, Yan Y, He Y, Yang C, Li Y. J Am Chem Soc 2006;128(14):4911-6.
6. Sun B, Marx E, Greenham NC. Nano Lett 2003;3(7):961-3.
7. Coakley KM, McGehee MD. Chem Mater 2004;16(23):4533-42.
8. Kietzke T, Horhold HH, Neher D. Chem Mater 2005;17(26):6532-7.
9. Kietzke T, Egbe DAM, Horhold HH, Neher D. Macromolecules 2006;39(12):4018-22.
10. Wang KL, Liu YL, Shih IH, Neoh KG, Kang ET. J Polym Sci Part A Polym Chem 2010;48(24):5790-800.
11. Hide F, Diaz-Garcia MA, Schwartz BJ, Andersson MR, Pei Q, Heeger AJ. Science 1996;273(5283):1833-6.
12. Tessler N, Denton GJ, Friend RH. Nature 1996;382(6593):695-6.
13. Lee K, Cho JC, DeHeck J, Kim J. Chem Commun 2006;2006(18):1983-5.
14. Cheng F, Zhang GW, Lu XM, Huang YQ, Chen Y, Zhou Y, Fan QL, Huang W. Macromol Rapid Commun 2006;27(10):799-803.
15. Kim YM, Lim E, Kang IN, Jung BJ, Lee J, Koo BW, Do LM, Shim HK. Macromolecules 2006;39(12):4081-5.
16. Li Y, Wu Y, Ong BS. Macromolecules 2006;39(19):6521-7.
17. Chen WC. NTU’s lecture.
18. Skoog DA, Holler FJ, Nieman TA. Principles of Instrumental Analysis, Harcourt Brace & Co 1998:357.
19. Skoog DA, Leary JJ原著, 林敬二, 林宗義審譯, 儀器分析, 美亞書版, 1994.
20. Pope M, Kallmann HP, Magnante P. J Chem Phys 1963;38(8):2042-3.
21. Tang CW, Vanslyke SA. Appl Phys Lett 1987;51(12):913-5.
22. Platt JR. J Chem Phys 1961;34(3):862-3.
23. Deb SK, Shaw RF. US Patent 3 521 941 1970
24. http://www.gentex.com/
25. Lampert CM. Proc SPIE Int Soc Opt Eng 1999;3788:2-11.
26. Lampert CM. Proc SPIE Int Soc Opt Eng 2001;4458:95-103.
27. Lampert CM. Mater Today 2004;7(3):28-35.
28. Coleman JP, Lynch AT, Madhukar P, Wagenknecht JH. Sol Energy Mater Sol Cells 1999;56(3-4):395-418.
29. Liu J, Coleman JP. Mater Sci Eng A 2000;286(1):144-8.
30. Edwards MOM, Boschloo G, Gruszecki T, Pettersson H, Sohlberg R, Hagfeldt A. Electrochim Acta 2001;46(13-14):2187-93.
31. de Vries GC. Electrochim Acta 2001;44(18):3185-93.
32. Kido J, Harada G, Nagai K. Chem Lett 1996;1996(2):161-2.
33. Liu Y, Ma H, Jen AKY. Chem Commun 1998;1998(24):2747-8.
34. Peng Z, Bao Z, Galvin ME. Chem Mater 1998;10(8):2086-90.
35. Bao Z, Peng Z, Galvin ME, Chandross EA. Chem Mater 1998;10(5):1201-4.
36. Lu J, Hlil AR, Sun Y, Hay AS, Maindron T, Dodelet JP, D'Iorio M. Chem Mater 1999;11(9):2501-7.
37. Meng H, Chen ZK, Yu WL, Pei J, Liu XL, Lai YH, Huang W. Synth Met 1999;100(3):297-301.
38. Meng H, Chen ZK, Liu XL, Lai YH, Chua SJ, Huang W. Phys Chem Chem Phys 1999;1(13):3123-7.
39. Jenekhe SA, Lu L, Alam MM. Macromolecules 2001;34(21):7315-24.
40. Wu FI, Reddy DS, Shu CF, Liu MS, Jen AKY. Chem Mater 2002;15(1):269-74.
41. Shu CF, Dodda R, Wu FI, Liu MS, Jen AKY. Macromolecules 2003;36(18):6698-703.
42. Karastatiris P, Mikroyannidis JA, Spiliopoulos IK. J Polym Sci Part A Polym Chem 2008;46(7):2367-78.
43. Zhang K, Tao Y, Yang C, You H, Zou Y, Qin J, Ma D. Chem Mater 2008;20(23):7324-31.
44. Vellis PD, Mikroyannidis JA, Cho MJ, Choi DH. J Polym Sci Part A Polym Chem 2008;46(16):5592-603.
45. Mikroyannidis JA, Damouras PA, Maragos VG, Tsai LR, Chen Y. Eur Polym J 2009;45(1):284-94.
46. Shi W, Wang L, Zhen H, Zhu D, Awut T, Mi H, Nurulla I. Dyes Pigm 2009;83(1):102-10.
47. Kim JJ, Kim KS, Baek S, Kim HC, Ree M. J Polym Sci Part A Polym Chem 2002;40(8):1173-83.
48. Mallegol T, Gmouh S, Meziane MAA, Blanchard-Desce M, Mongin O. Synthesis 2005;2005(11):1771-4.
49. Chen JC, Liu YC, Ju JJ, Chiang CJ, Chern YT. Polym 2011;52(4):954-64.
50. Chiu JC, Chu CC, Chen JC. Annual Metting of Polymer Society, Taiwan 2010:BO-23.
51. Zhang L, Hu S, Chen J, Chen Z, Wu H, Peng J, Cao Y. Adv Funct Mater 2011;21(19):3760-9.
52. Eisfeld A, Briggs JS. Chem Phys 2006;324(2-3):376-84.
53. Liu Y, Xu S, Li J, Xin Y, Zhao G, Ye B, Cao S. Polym Adv Technol 2008;19(7):793-800.
54. Yu G, Liu Y, Wu X, Zheng M, Bai F, Zhu D, Jin L, Wang M. Appl Phys Lett 1999;74(16):2295-7.
55. Huo L, He C, Han M, Zhou E, Li Y. J Polym Sci Part A Polym Chem 2007;45(17):3861-71.
56. Li H, Geng Y, Tong S, Tong H, Hua R, Su G, Wang L, Jing X, Wang F. J Polym Sci Part A Polym Chem 2001;39(19):3278-86.
57. Huang H, He Q, Lin H, Bai F, Cao Y. Thin Solid Films 2005;477(1-2):7-13.
58. Seo ET, Nelson RF, Fritsch JM, Marcoux LS, Leedy DW, Adams RN. J Am Chem Soc 1966;88(15):3498-503.

無法下載圖示 全文公開日期 2017/01/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE