簡易檢索 / 詳目顯示

研究生: 簡維辰
Wei-Chen Jian
論文名稱: 利用空間與時間相關性的品質提升解馬賽克方法用於任意彩色濾波陣列視訊
Novel Efficient Universal Demosaicking for Arbitrary Color Filter Array Videos Using Spatial and Temporal Correlations
指導教授: 鍾國亮
Kuo-Liang Chung
口試委員: 蔡文祥
Wen-Hsiang Tsai
范國清
Kuo-Chin Fan
廖弘源
Mark Liao
徐繼聖
Jison Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 42
中文關鍵詞: 通用式解馬賽克最小平方法式混合CPSNRSSIM視覺感知任意彩色濾波陣列視訊空間與時間相關性
外文關鍵詞: Universal demosaicking, Least square-based fusion, Structural similarity (SSIM), Arbitrary color filter array (CFA) structures, CFA videos, Spatial and temporal correlations.
相關次數: 點閱:178下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了節省硬體的成本,現代大部分的數位相機採用單一感光元件並配合RGB
    彩色濾波陣列來捕捉真實世界的場景。由於拍攝到的影像中,每一個像素只包
    含紅、綠、藍其中一個主色,因此這類的視訊我們稱之為彩色濾波陣列視訊,
    或稱作馬賽克視訊。而為了視覺方面的展現,將彩色濾波陣列視訊轉換為全彩
    RGB 視訊是必須的。在本論文中,我們針對任意彩色濾波陣列視訊提出了一個新
    穎的高品質通用式解馬賽克演算法。在提出的方法中,除了新的空間域解馬賽
    演算法外,在解馬賽克時也會將空間域跟時間域的關聯性也納入考量,同時也
    提出了一個基於最小平方法的混合策略來將空間域跟時間域的結果混合。基於
    28 部影片以及11 種不同結構的彩色濾波陣列,就三種客觀品質量度
    (CPSNR,SSIM,S-CIELAB)以及一種主觀的品質量度而言,實驗結果顯示出用本論
    文提出的解馬賽克方法相較於前人的方法會有較好的品質。


    To save hardware cost, nowadays most digital cameras utilize the single-sensor technology to realize the red-green-blue (RGB) color filter array (CFA) structure for capturing real-world scenes. Since each pixel in the captured video is only composed of one primary color, such a video is usually referred to as the CFA video (or mosaic video). For the purpose of visual display, it is necessary to convert the captured CFA video into the full-color RGB video. In this paper, we propose a novel efficient universal demosaicking algorithm for arbitrary CFA videos. In the proposed algorithm, besides the newly proposed spatial domain based universal demosaicking
    method, both the spatial and temporal correlations between two consecutive CFA images are taken into account during the demosaicking and then an
    effective least square-based approach is developed to fuse the spatial-based
    demosaiced result and the temporal-based one. Based on 28 test videos with eleven RGB CFA structures, experimental results show that the demosaiced videos generated by the proposed universal demosaicking algorithm have better quality in terms of three objective quality measures, such as color peak signal-to-noise ratio (CPSNR), structural similarity (SSIM) index, and S-CIELAB, and one subjective quality measure, the visual perception, when compared with the two state-of-the-art universal demosaicking methods by Lukac and Plataniotis as well as Yang et al.

    教授推薦書 Ⅰ 論文口試委員審定書 Ⅱ 中文摘要 Ⅲ Abstract Ⅳ 誌謝 Ⅴ Table of Contents Ⅵ List of Tables Ⅶ List of Figures Ⅷ Introduction 1 Proposed Two-Stage Universal Demosaicking Method for Arbitrary CFA Videos 4 Recovering the green channel 5 Recovering the red and blue channels 12 Experimental Results 16 Conclusion 30

    [1] Bayer, B. E. 1976. Color imaging array, U.S. Patent No. 3 971 065.
    [2] R. Lukac and K. N. Plataniotis, “Color filter arrays: Design and performance
    analysis”, IEEE Trans. Consumer Electron, Vol 51, No. 4, pp. 1260-1267, Nov.
    2005.
    [3] M. Parmar and S. J. Reeves, “A perceptually based design methodology for color
    filter arrays”, Proceeding of IEEE ASSP 2004, Montreal, pp. 473-476, May
    2004.
    [4] S. Yamanaka, “Solid state camera”, U.S. Patent# 4 054 906, 1977.
    [5] J. E. Adams and J. F. Hamilton, “Adaptive color plan interpolation in single
    sensor color electric camera”, U.S. Patent# 5 506 619, 1996.
    [6] K. H. Chung and Y. H. Chan, “Color demosaicing using variance of color
    differences”, IEEE Trans. Image Processing, Vol 15, No. 10, pp. 2944-2955, Oct.
    2006.
    [7] K. L. Chung, W. J. Yang, W. M. Yan, and C. C. Wang, “Demosaicing of color
    filter array captured images using gradient edge detection masks and adaptive
    heterogeneity-projection”, IEEE Trans. Image Processing, Vol 17, No. 12, pp.
    2356-2367, Dec. 2008.
    [8] D. R. Cok, “Signal processing method and apparatus for producing interpolated
    chrominance values in a sampled color image signal”, U.S. Patent# 4 642 678,
    1987.
    [9] D. Menon, “Regularization Approaches to Demosaicking”, IEEE Trans. Image
    Processing, Vol 18, No. 10, pp. 2209-2220, Oct. 2009.
    [10] Gu, Jing, Patrick J. Wolfe, and Keigo Hirakawa, “Filterbank-based universal
    demosaicking”, IEEE Int. Conf. on Image Processing, pp. 1981-1984, Sep. 2010.
    [11] R. Kimmel, “Demosaicing: Image reconstruction from color CCD samples”,
    32
    IEEE Trans. Image Processing, Vol 8, No. 9, pp. 1221-1228, Sep. 1999.
    [12] L. Condat, “A generic variational approach for demosaicking from an arbitrary
    color filter array”, IEEE Int. Conf. on Image Processing, pp. 1625-1628, Nov.
    2009.
    [13] S. C. Pei and I. K. Tam, “Effective color interpolation in CCD color filter arrays
    using signal correlation”, IEEE Trans. Circuits and Systems for Video
    Technology, Vol 13, No. 6, pp. 503-513, Jun. 2003.
    [14] R. Lukac and K. N. Plataniotis, “Universal demosaicing for imaging pipelines
    with an RGB color filter array”, Pattern Recognition, Vol 38, No. 11, pp.
    2208-2212, Nov. 2005.
    [15] M. Singh and T. Singh, “Linear universal demosaicking of regular pattern color
    filter arrays”, IEEE Int. Conf. on Acoustics, Speech and Signal Processing, pp.
    1277-1280, Mar. 2012.
    [16] W. J. Yang, K. L. Chung, W. N. Yang, and L.C. Lin, “Universal chroma
    subsampling strategy for compressing mosaic video sequences with arbitrary
    RGB color filter arrays in H.264/AVC”, IEEE Trans. Circuits and Systems for
    Video Technology, Vol 23, No. 4, pp. 591-606, Jan. 2013

    QR CODE