簡易檢索 / 詳目顯示

研究生: 朱晏葦
YEN-WEI CHU
論文名稱: 3D列印粒料應用於瀝青混凝土之材料特性與可行性評估
Material characteristics and feasibility evaluation of 3D printing aggregates applied to asphalt concrete
指導教授: 廖敏志
Min-Chih Liao
口試委員: 黃兆龍
Chao-Lung Hwang
陳建旭
Chien-Hsu Chen
蘇育民
Yu-Min Su
盧之偉
Chih-Wei Lu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 219
中文關鍵詞: 3D列印技術聚乳酸體積配比設計塑膠粒料AASHTO鋪面厚度設計
外文關鍵詞: volume design, plastic aggregates, CT-index, AASHTO pavement design
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前營建業因濫採砂石導致來源短缺,又正逢近年來3D列印技術應用案例急遽增加,因此本研究嘗試將3D列印應用於鋪面工程上,主要方向係透過3D列印技術製作粒徑不同塑膠粒料代替部分天然粒料之瀝青混合物,塑膠粒料係根據天然粒料粒型作為參考進而設計出實心、空心與細塑膠粒料,瀝青部分採用改質III-C型瀝青作為黏結料,首先透過各成分比例觀念找出其配比設計且探討體積性質,後續進行瀝青混凝土試驗檢核是否符合規範,並透過AASHTO鋪面厚度設計進行初始建造成本比較與利用SWOT分析各優劣判斷其適用性;另對實心塑膠粒料混合物進行瀝青萃取,接續進行瀝青物性與流變試驗判斷塑膠熔融對於瀝青之影響。本研究試驗結果顯示實心塑膠粒料應用於鋪面工程可行性較高,因其單位重 (Gmb)、穩定值、CT-index與車轍輪跡試驗皆優於傳統瀝青混凝土,鋪面績效方面亦優於空心及細塑膠粒料混合物,而其缺點為初始建造成本較高,但本研究亦根據CT-index試驗結果可得知實心塑膠粒料可改善混合物抗張裂縫能力,因此3D列印應用於鋪面工程優勢可顯現於後續再生瀝青混凝土維修成本、改善其黏結力與耐久性彌補,而於瀝青萃取部分說明添加PLA (Polylactic Acid)可提高剛度與軟化點,降低針入度、恢復率與韌性,但總體來說黏結料需針對PLA熔融情況、SBS降級現象、離析情形與試驗方式作探討。


    At present, the construction industry has a shortage of aggregate due to excavation activities. In recent years, 3D printing applied to construction industry is becoming an engineering technology. Therefore, this research attempts to apply 3D printing to pavement engineering. The primary objective is to use 3D printing technology to produce plastic aggregates with different particle sizes used for asphalt concrete. The plastic aggregates adopted in this research are based on the natural aggregates shape as a reference to design solid, hollow and fine plastic aggregate, respectively. In addition, polymer modified asphalt was utilized as a binder. First, the research found out the mix design of each material and discussed the volume properties through the concept of the proportion of each material. This research also conducted an asphalt concrete test to check whether it meets the specifications. Through the design of AASHTO pavement thickness and SWOT analysis, compared the initial construction cost to judge its applicability. In addition, asphalt extraction test was performed on the solid plastic aggregate mixture. It used asphalt physical properties and rheological tests to determine the impact of plastic melting on asphalt. The test results showed that the application of solid plastic aggregates to pavement engineering is more feasible because its unit weight (Gmb), stability value, CT-index and rutting wheel track tests are better than traditional asphalt concrete. The pavement performance of solid plastic aggregates mixtures was also better than pavement performance of hollow and fine plastic aggregate mixtures. Although the test results also showed that solid plastic aggregates can improve the tensile strength of the asphalt mixture, the price was too high. Therefore, the advantages of 3D printing applied to pavement engineering can be reflected in the subsequent maintenance cost of recycled asphalt concrete, improving adhesion and durability. In the asphalt extraction part, it is found that adding PLA (Polylactic Acid) can increase stiffness, softening point, reduce penetration, recovery rate and toughness. Generally, the asphalt needs to be discussed for the PLA melting situation, the SBS degradation phenomenon, the segregation situation and the test method.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 表目錄 X 圖目錄 XIII 英文縮寫目錄 XIX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 研究目的 4 1.4 研究範圍 5 第二章 文獻回顧 6 2.1 瀝青材料 6 2.1.1 瀝青化學成分 6 2.1.2 改質瀝青性質 10 2.1.3 改質瀝青降級現象 11 2.2 高分子材料 13 2.2.1 高分子材料型態與轉移溫度 13 2.2.2 高分子材料種類及結構形式 16 2.313D列印趨勢與技術 19 2.413D列印之材料 31 2.513D列印技術應用於鋪面修補 33 2.6 塑膠材料於鋪面工程上應用 34 2.7 塑膠材料於土木工程上應用 39 2.813D列印技術與塑膠材應用之綜合彙整 40 第三章 研究計畫 41 3.1 試驗範圍 41 3.2 研究流程 42 3.313D列印設計流程 45 3.4 試驗材料 48 3.4.1 聚乳酸 48 3.4.2 高分子改質瀝青 49 3.4.3 一般與塑膠粒料瀝青混凝土之密級配 49 3.5 試體編號 53 3.6 塑膠粒料混凝土配比設計 55 3.7 粒料與瀝青試驗方法及設備 65 3.7.1 粒料之扁平率試驗 65 3.7.2 粒料之破碎面試驗 66 3.7.3 掃描式電子顯微鏡試驗 67 3.7.4 針入度試驗 68 3.7.5 軟化點試驗 69 3.7.61Brookfield旋轉黏滯度試驗 71 3.7.7 彈性恢復試驗 72 3.7.8 黏結料韌性試驗 74 3.7.9 離析試驗 76 3.7.10 頻率掃描試驗 76 3.7.11 多重應力潛變恢復試驗 78 3.8 混合物試驗方法及設備 80 3.8.11Superpave旋轉壓實機 80 3.8.2 馬歇爾穩定值與流度值試驗 85 3.8.3 間接張力強度試驗 86 3.8.4 回彈模數試驗 89 3.8.5 英式擺錘試驗 91 3.8.6 車轍輪跡試驗 93 3.6.71AASHTO鋪面厚度設計 94 3.8.8 高速離心萃取試驗 97 3.8.9 真空濃縮萃取試驗 99 3.8.10 長期老化試驗 100 第四章 結果與分析 101 4.113D塑膠粒料設計參數與成品 101 4.2 粒料與級配基本物性分析 106 4.2.1 比重與吸水率 106 4.2.2 粗粒料之扁平率與破碎面 107 4.2.3 體積級配曲線 108 4.31PLA與瀝青微觀分析 110 4.3.1 塑膠粒料微觀分析 110 4.3.2 溫度影響之微觀分析 111 4.3.3 溫度與水分影響之微觀分析 113 4.3.4 膨脹之微觀與巨觀探討 114 4.3.5 萃取後瀝青微觀探討 115 4.3.6 離析現象微觀探討 116 4.4 塑膠瀝青Brookfield旋轉黏滯度前導試驗 119 4.5 塑膠瀝青基本性質分析 127 4.5.1 針入度試驗結果 129 4.5.2 軟化點試驗結果 130 4.5.3 彈性恢復試驗結果 131 4.5.4 黏結料韌性行為分析 133 4.5.5 離析試驗結果 135 4.6 塑膠瀝青動態流變行為分析 138 4.6.1 頻率掃描試驗結果 138 4.6.21G*/sinδ抗車轍指標結果 141 4.6.3 多重應力潛變恢復試驗結果 142 4.7 馬歇爾試驗與體積性質 145 4.7.1 全天然粒料混合物 145 4.7.2 實心塑膠粒料混合物 153 4.7.3 空心塑膠粒料混合物 158 4.7.4 細塑膠粒料混合物 160 4.7.5 馬歇爾試驗與體積性質比較 162 4.8 間接張力強度試驗 170 4.8.1 間接張力強度分析 170 4.8.21CT-index指數分析 172 4.9 回彈模數試驗 174 4.10 英式擺錘試驗 175 4.11 車轍輪跡試驗 176 4.121AASHTO鋪面厚度設計與成本評估 177 4.12.1 鋪面設計假設條件與公式應用 177 4.12.2 鋪面設計過程 179 4.131SWOT分析 183 第五章 結論與建議 184 5.1 結論 184 5.2 建議 187 參考文獻 189 附錄11Brookfield旋轉黏滯度回歸方程式與相關係數 195

    中華民國交通部 (2002),「柔性鋪面設計規範」,行政院交通部。
    中華民國交通部 (2021),交通部統計查詢網。檢自https://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100 (20210604)
    公共工程委員會 (2006),「密級配改質瀝青混凝土鋪面」,第02796章施工規範綱要,行政院。
    王麗 (2012),生物可降解材料-聚乳酸。檢自https://wenku.baidu.com/view/458e2561783e0912a2162aa9.html (20210114)
    何經、呂佳燕、黃勝明、葉士敏 (1988),高分子科學導論,復文書局,臺南市。
    周宗華、林建中 (2005),高分子材料,新文京開發出版股份有限公司,臺北縣。
    孟繁萱 (2017),「柔性鋪面承載力與生命週期成本分析」,碩士論文,國立成功大學土木工程系,臺南市。
    胡德 (1990),高分子物理與機械性質,渤海堂文化事業有限公司,臺北市。
    郭家興 (2012),「生物可降解複合材料之分子配向性對機械強度之影響研究」,碩士論文,國立臺灣科技大學營建工程系,臺北市。
    黃俊富 (2015),「拌合塑性體和彈性體之高分子改質瀝青」,碩士論文,國立成功大學土木工程系,臺南市。
    羅玉珊 (2020),「橡膠改質對瀝青黏結料與混合料之工程績效影響」,碩士論文,國立臺灣科技大學營建工程系,臺北市。
    羅尊仁 (2018),「橡膠瀝青流變行為與工程性質評估」,碩士論文,國立臺灣科技大學營建工程系,臺北市。

    AASHTO R30-02 (2015). “Standard Practice for Mixture Conditioning of Hot Mix Asphalt (HMA)”, American Association of State Highway and Transportation Officials.
    AASHTO T324-11 (2011). “Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA)”, American Association of State Highway and Transportation Officials.
    Abou-Ali, A.M., Oraib, A.K., Lee, D.W. and Rowshan, R. (2020). “Mechanical behavior of polymeric selective laser sintered ligament and sheet based lattices of triply periodic minimal surface architectures”, Materials and Design, 196, PP. 109100.
    Acioli-Moura, R. and Sun, X.S. (2008). “Thermal degradation and physical aging of poly (lactic acid) and its blends with starch”, Polymer Engineering and Science, 48, PP. 829-836.
    Aggarwal, S., Johnson, S, Saloni, D and Hakovirta, M. (2019). “ Novel 3D printing filament composite using diatomaceous earth and polylactic acid for materials properties and cost improvement”, Composites Part B, 177, PP. 107310.
    ASTM D36/D36M-14 (2014). “Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus)”, American Society for Testing and Materials.
    ASTM D4402/D4402M-15 (2015). “Standard Guide for Calculating In Situ Equivalent Elastic Moduli of Pavement Materials Using Layered Elastic Theory”, American Society for Testing and Materials.
    ASTM D4402/D4402M-15 (2015). “Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer”, American Society for Testing and Materials.
    ASTM D4867/D4867M-09 (2014). “Standard Test Method for Effect of Moisture on Asphalt Concrete Paving Mixtures”, American Society for Testing and Materials.
    ASTM D5/D5M-19 (2019). “Standard Test Method for Penetration of Bituminous Materials”, American Society for Testing and Materials.
    ASTM D5801-17 (2017). “Standard Test Method for Toughness and Tenacity of Asphalt Materials”, American Society for Testing and Materials.
    ASTM D5821 (2017). “Standard Test Method for Determining the Percentage of Fractured Particles in Coarse Aggregate”, American Society for Testing and Materials.
    ASTM D6084/D6084M-18 (2018). “Standard Test Method for Elastic Recovery of Asphalt Materials by Ductilometer”, American Society for Testing and Materials.
    ASTM D6925-15 (2015). “Standard Test Method for Preparation and Determination of the Relative Density of Asphalt Mix Specimens by Means of the Superpave Gyratory Compactor”, American Society for Testing and Materials.
    ASTM D6925-15 (2015). “Standard Test Method for Preparation and Determination of the Relative Density of Asphalt Mix Specimens by Means of the Superpave Gyratory Compactor”, American Society for Testing and Materials.
    ASTM D6927-15 (2015). “Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures”, American Society for Testing and Materials.
    ASTM D6931-07 (2017). “Standard Test Method for Indirect Tensile (IDT) Strength of Bituminous Mixtures”, American Society for Testing and Materials.
    ASTM D7369-20 (2020). “Standard Test Method for Determining the Resilient Modulus of Asphalt Mixtures by Indirect Tension Test1”, American Society for Testing and Materials.
    ASTM D7405-15 (2020). “Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer”, American Society for Testing and Materials.
    ASTM D8225-19 (2020). “Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature”, American Society for Testing and Materials.
    ASTM E303-93 (2018). “Measuring Surface Frictional Properties Using the British Pendulum Tester”, American Society for Testing and Materials.
    ASTM International (2013). “F2792-12a - Standard Terminology for Additive Manufacturing Technologies”, Rapid Manuf. Assoc, pp. 10–12, 2013.
    Behnood, A. and Gharehveran, M.M. (2019). “Morphology, rheology, and physical properties of polymer-modified asphalt binders”, European Polymer Journal, 112, PP. 766-791.
    Belmokaddem, M., Mahi, A., Senhadji, Y. and Pekmezci, B.Y. (2020). “Mechanical and physical properties and morphology of concrete containing plastic waste as aggregate”, Construction and Building Materials, 257, PP. 119559.
    Boucedra, A., Bederina, M. and Ghernouti, Y (2020). “Study of the acoustical and thermo-mechanical properties of dune and river sand concretes containing recycled plastic aggregates”, Construction and Building Materials, 256, PP. 119447.
    Calignano, F., Manfredi, D., Ambroaio, E.P and Biamino, S. (2017). “Overview on additive manufacturing technologies”, Proceedings of the IEEE, 99, PP. 1-20.
    Chen, Z., Xie, Y.M., Wu, X., Wang, Z., Li, Q and Zhou, S. (2019). “On hybrid cellular materials based on triply periodic minimal surfaces with extreme mechanical properties”, Materials and Design, 183, PP. 108109.
    Dong, J., Huang, X., Muley, P., Wu, T., Barekati-Goudarzi, M., Wu, Q. (2020). “Carbonized cellulose nanofibers as dielectric heat sources for microwave annealing 3D printed PLA composite”, Composites Part B, 184, PP. 107640.
    Fakher, S., Ahdaya, M., Elturkl, M. and Imqam, A. (2019). “Critical review of asphaltene properties and factors impacting its stability in crude oil”, Journal of Petroleum Exploration and Production Technology, 10, PP. 1183-1200.
    Gibson, I, Rosen, D.W, and Stucker, B. (2010). “Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing”, Springer US.
    IS 2386-1 (1963). “Methods of Test for Aggregates of Concrete- Particle Size and Shape”, Indian Standard.
    Jackson, R., Patrick, P.S. and Miodownik, M. (2020). “Functionally graded 3D printed asphalt composites”, Materials Letters: X, 7, PP. 100047.
    Jackson, R., Wojcik, A and Miodownik, M (2018). “3D printing of asphalt and its effect on mechanical properties”, Materials and Design, 160, PP. 468-474.
    Kuciel, S., Mazur, K. and Hebda, M. (2020). “The influence of wood and basalt fibers on mechanical, thermal and hydrothermal properties of pla composites”, Journal of Polymers and the Environment, 28, PP. 1204-1215.
    Lesueur, D. (2009). “The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification”, Advances in Colloid and Interface Science, 145, PP. 42-48.
    Liang, M., Xin, X., Fan, W.,Wang, H., Jiang, H., Zhang, J. and Yao, Z. (2019). “Phase behavior and hot storage characteristics of asphalt modified with various polyethylene: experimental and numerical characterizations”, Construct. Build. Mater, 203, PP.608-620.
    Moncayo-Riascos, I., Taborda, E., Hoyos, B.A., Franco, C.A. and Cortés, F.B. (2020). “Effect of resin/asphaltene ratio on the rheological behavior of asphaltene solutions in a de-asphalted oil and p-xylene: A theoretical–experimental approach”, Journal of Molecular Liquids, 315, PP. 113754.
    Movilla-Quesada, D., Raposeiras, A.C., Silva-Klein, L.T., Lastra-Gonzalez, P. and Castro-Fresno, D. (2019). “Use of plastic scrap in asphalt mixtures added by dry method as a partial”, Waste Management, 87, PP. 751-760.
    Saikia, N. and Brito, J.D. (2012). “Use of plastic waste as aggregate in cement mortar and concrete preparation: A review”, Construction and Building Materials, 34, PP. 385-401.
    Tay, Y.W.D, Panda, B., Paul, S.C., Noor Mohamed, N.A., Tan, M.J. and Leong, K.F (2017). “3D printing trends in building and construction industry: a review”, Virtual and Physical Prototyping, 12:3, PP261-276.
    Wu, S. and Montalvo, L. (2021). “Repurposing waste plastics into cleaner asphalt pavement materials: A critical literature review”, Journal of Cleaner Production, 280, PP. 124355.
    Xu, Y., Wu, X., Guo, X. and Kong, B. (2017). “The Boom in 3D-Printed Sensor Technology”, 17, PP. 1166.
    Yao, T., Zhang, K. and Ye, J. (2020). “A novel generalized stress invariant-based strengthmodel for inter-layer failure of FFF 3D printing PLA material”, Materials and Design, 193, PP. 108799.
    Zhu, J., Birgisson, B. and Kringos, N. (2014). “Polymer modification of bitumen: Advances and challenges”, European Polymer Journal, 54, PP. 18-38.
    Zoorob, S.E. and Suparma, L.B. (2000). “Laboratory design and investigation of the properties of continuously graded Asphaltic concrete containing recycled plastics aggregate replacement (Plastiphalt)”, Cement & Concrete Composites, 22, PP. 233-242.
    Zoorob, S.E. and Suparma, L.B. (2000). “Laboratory design and investigation of the properties of continuously graded Asphaltic concrete containing recycled plastics aggregate replacement (Plastiphalt)”, Cement & Concrete Composites, 22, PP. 233-242.

    無法下載圖示 全文公開日期 2024/07/28 (校內網路)
    全文公開日期 2024/07/28 (校外網路)
    全文公開日期 2024/07/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE