簡易檢索 / 詳目顯示

研究生: 簡劭宇
Shao-Yu Chien
論文名稱: 光解程序分解聚乳酸與分解液再利用之研究
Study on Degradation of Poly(lactic acid) via Photolysis Process and its Utilization Recovery
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 李豪業
Hao-Yeh Lee
顧 洋
Young Ku
蔡伸隆
Shen-Long Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 75
中文關鍵詞: 真空紫外燈光解聚乳酸醋酸植物養分
外文關鍵詞: VUV, Photolysis, Polylactic acid, Acetic acid, Plant nutrients
相關次數: 點閱:185下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1 生物可降解塑膠 1 1.2 聚乳酸簡介 4 1.3 研究動機 5 第二章 文獻回顧 7 2.1 醫療廢棄物處理的方法 7 2.2 聚乳酸的降解方法 9 2.2.1 水解降解 11 2.2.2 光降解 13 2.2.3 微生物降解 15 2.2.4 酶降解 16 2.3 光催化高級氧化程序氧化法 18 2.4 生物燃料的生物培養方法 19 第三章 研究方法 21 3.1 實驗規劃 21 3.2 實驗藥品與儀器 22 3.2.1 實驗藥品 22 3.2.2 分析儀器 23 3.2.2.1 高溫燃燒式總有機碳分析儀 23 3.2.2.2 氣相層析儀 25 3.2.2.3 氣相層析質譜儀 26 3.2.2.4 X光繞射儀 27 3.2.2.5 掃描式電子顯微鏡 28 3.2.2.6 凝膠滲透色譜法 29 3.2.2.7 傅立葉轉換紅外光譜 30 3.2.3 反應器系統 31 3.2.3.1 批次反應器 31 3.3 降解PLA實驗步驟 32 3.3.1 VUV/Autoclave/水煮PLA的製備 32 3.3.2 土壤分解PLA測試 32 3.3.3 VUV光水解測試 33 3.3.4 UVA光水解測試 33 3.3.5 UVC光水解測試 33 3.4 水生植物養殖實驗步驟 33 第四章 結果與討論 34 4.1 PLA產物訊號分析 34 4.2 PLA批次系統降解測試 36 4.2.1 土壤分解之測試 36 4.2.2 紫外光批次水解測試 41 4.2.3.1 物性分析 43 4.2.3.2 定量分析 48 4.3 最適化分解與再利用 54 4.3.1 PLA口罩分解 54 4.3.1.1 定性分析 54 4.3.1.2 定量分析 58 4.3.2 水生植物養殖應用 62 第五章 結論與未來展望 67 5.1 結論 67 5.1.1 工業堆肥 67 5.1.2 紫外光水解系統 67 5.1.3 PLA循環經濟 67 5.2 未來展望 68 5.2.1 動力學分析 68 5.2.2 副產物含量分析 68 5.2.3 礦化率產生 69 5.2.4 封閉循環經濟系統 69 參考文獻 70

    [1] E. Tamburini, S. Costa, D. Summa, L. Battistella, E.A. Fano, G. Castaldelli, Plastic (PET) vs bioplastic (PLA) or refillable aluminium bottles – What is the most sustainable choice for drinking water? A life-cycle (LCA) analysis, Environmental Research 196 (2021) 110974.
    [2] C. Wesch, K. Bredimus, M. Paulus, R. Klein, Towards the suitable monitoring of ingestion of microplastics by marine biota: A review, Environmental Pollution 218 (2016) 1200-1208.
    [3] F.M. Lamberti, L.A. Román-Ramírez, J. Wood, Recycling of Bioplastics: Routes and Benefits, Journal of Polymers and the Environment 28(10) (2020) 2551-2571.
    [4] E. Balla, V. Daniilidis, G. Karlioti, T. Kalamas, M. Stefanidou, N.D. Bikiaris, A. Vlachopoulos, I. Koumentakou, D.N. Bikiaris, Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications, Polymers, 2021.
    [5] <EUBP_Facts_and_figures.pdf>.
    [6] M. Sadat-Shojai, G.-R. Bakhshandeh, Recycling of PVC wastes, Polymer Degradation and Stability 96(4) (2011) 404-415.
    [7] F.R. Beltrán, C. Infante, M.U. de la Orden, J. Martínez Urreaga, Mechanical recycling of poly(lactic acid): Evaluation of a chain extender and a peroxide as additives for upgrading the recycled plastic, Journal of Cleaner Production 219 (2019) 46-56.
    [8] N. Singh, D. Hui, R. Singh, I.P.S. Ahuja, L. Feo, F. Fraternali, Recycling of plastic solid waste: A state of art review and future applications, Composites Part B: Engineering 115 (2017) 409-422.
    [9] P. McKeown, M.D. Jones, The Chemical Recycling of PLA: A Review, Sustainable Chemistry, 2020, pp. 1-22.
    [10] M.F. Cosate de Andrade, P.M.S. Souza, O. Cavalett, A.R. Morales, Life Cycle Assessment of Poly(Lactic Acid) (PLA): Comparison Between Chemical Recycling, Mechanical Recycling and Composting, Journal of Polymers and the Environment 24(4) (2016) 372-384.
    [11] A.E. Schwarz, T.N. Ligthart, D. Godoi Bizarro, P. De Wild, B. Vreugdenhil, T. van Harmelen, Plastic recycling in a circular economy; determining environmental performance through an LCA matrix model approach, Waste Management 121 (2021) 331-342.
    [12] G. Sauve, K. Van Acker, The environmental impacts of municipal solid waste landfills in Europe: A life cycle assessment of proper reference cases to support decision making, Journal of Environmental Management 261 (2020).
    [13] R. Ahmad, G. Liu, R. Santagata, M. Casazza, J. Xue, K. Khan, J. Nawab, S. Ulgiati, M. Lega, LCA of Hospital Solid Waste Treatment Alternatives in a Developing Country: The Case of District Swat, Pakistan, Sustainability, 2019.
    [14] M. Ali, W. Wang, N. Chaudhry, Application of life cycle assessment for hospital solid waste management: A case study, Journal of the Air & Waste Management Association 66(10) (2016) 1012-1018.
    [15] J.K. Koo, S.I. Jeong, Sustainability and shared smart and mutual - green growth (SSaM-GG) in Korean medical waste management, Waste Management and Research 33(5) (2015) 410-418.
    [16] I.A. Ignatyev, W. Thielemans, B. Vander Beke, Recycling of polymers: A review, ChemSusChem 7(6) (2014) 1579-1593.
    [17] N. Peelman, P. Ragaert, B. De Meulenaer, D. Adons, R. Peeters, L. Cardon, F. Van Impe, F. Devlieghere, Application of bioplastics for food packaging, Trends in Food Science & Technology 32(2) (2013) 128-141.
    [18] I. Gonçalves de Moura, A. Vasconcelos de Sá, A.S. Lemos Machado Abreu, A.V. Alves Machado, 7 - Bioplastics from agro-wastes for food packaging applications, in: A.M. Grumezescu (Ed.), Food Packaging, Academic Press2017, pp. 223-263.
    [19] Y.-B. Luo, X.-L. Wang, Y.-Z. Wang, Effect of TiO2 nanoparticles on the long-term hydrolytic degradation behavior of PLA, Polymer Degradation and Stability 97(5) (2012) 721-728.
    [20] N.F. Zaaba, M. Jaafar, A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation, Polymer Engineering & Science 60(9) (2020) 2061-2075.
    [21] E. Castro-Aguirre, F. Iñiguez-Franco, H. Samsudin, X. Fang, R. Auras, Poly(lactic acid)—Mass production, processing, industrial applications, and end of life, Advanced Drug Delivery Reviews 107 (2016) 333-366.
    [22] N.A. Rosli, M. Karamanlioglu, H. Kargarzadeh, I. Ahmad, Comprehensive exploration of natural degradation of poly (lactic acid) blends in various degradation media: A review, International journal of biological macromolecules 187 (2021) 732-741.
    [23] K. Janczak, G.B. Dąbrowska, A. Raszkowska-Kaczor, D. Kaczor, K. Hrynkiewicz, A. Richert, Biodegradation of the plastics PLA and PET in cultivated soil with the participation of microorganisms and plants, International Biodeterioration & Biodegradation 155 (2020) 105087.
    [24] M.E. González-López, A.S.M. del Campo, J.R. Robledo-Ortíz, M. Arellano, A.A. Pérez-Fonseca, Accelerated weathering of poly (lactic acid) and its biocomposites: A review, Polymer Degradation and Stability 179 (2020) 109290.
    [25] M. Yagihashi, T. Funazukuri, Recovery of l-Lactic Acid from Poly(l-lactic acid) under Hydrothermal Conditions of Dilute Aqueous Sodium Hydroxide Solution, Industrial & Engineering Chemistry Research 49(3) (2010) 1247-1251.
    [26] P. Majgaonkar, R. Hanich, F. Malz, R. Brüll, Chemical recycling of post-consumer PLA waste for sustainable production of ethyl lactate, Chemical Engineering Journal 423 (2021) 129952.
    [27] V. Piemonte, S. Sabatini, F. Gironi, Chemical recycling of PLA: a great opportunity towards the sustainable development?, Journal of Polymers and the Environment 21 (2013) 640-647.
    [28] M.N. Siddiqui, L. Kolokotsiou, E. Vouvoudi, H.H. Redhwi, A.A. Al-Arfaj, D.S. Achilias, Depolymerization of PLA by phase transfer catalysed alkaline hydrolysis in a microwave reactor, Journal of Polymers and the Environment 28 (2020) 1664-1672.
    [29] M.A. Elsawy, K.-H. Kim, J.-W. Park, A. Deep, Hydrolytic degradation of polylactic acid (PLA) and its composites, Renewable and Sustainable Energy Reviews 79 (2017) 1346-1352.
    [30] M. Ahmad Sawpan, M.R. Islam, M.D.H. Beg, K. Pickering, Effect of Accelerated Weathering on Physico-Mechanical Properties of Polylactide Bio-Composites, Journal of Polymers and the Environment 27(5) (2019) 942-955.
    [31] M.E. González-López, A.S. Martín del Campo, J.R. Robledo-Ortíz, M. Arellano, A.A. Pérez-Fonseca, Accelerated weathering of poly(lactic acid) and its biocomposites: A review, Polymer Degradation and Stability 179 (2020) 109290.
    [32] L.B. Ellis, L.P. Wackett, Use of the University of Minnesota Biocatalysis/Biodegradation Database for study of microbial degradation, Microbial informatics and experimentation 2 (2012) 1-10.
    [33] T. Lomthong, S. Hanphakphoom, R. Yoksan, V. Kitpreechavanich, Co-production of poly(L-lactide)-degrading enzyme and raw starch-degrading enzyme by Laceyella sacchari LP175 using agricultural products as substrate, and their efficiency on biodegradation of poly(L-lactide)/thermoplastic starch blend film, INTERNATIONAL BIODETERIORATION & BIODEGRADATION 104 (2015) 401-410.
    [34] W. Pattanasuttichonlakul, N. Sombatsompop, B. Prapagdee, Accelerating biodegradation of PLA using microbial consortium from dairy wastewater sludge combined with PLA-degrading bacterium, International Biodeterioration & Biodegradation 132 (2018) 74-83.
    [35] H. Yagi, F. Ninomiya, M. Funabashi, M. Kunioka, Mesophilic anaerobic biodegradation test and analysis of eubacteria and archaea involved in anaerobic biodegradation of four specified biodegradable polyesters, Polymer Degradation and Stability 110 (2014) 278-283.
    [36] Z. Saadi, A. Rasmont, G. Cesar, H. Bewa, L. Benguigui, Fungal degradation of poly (l-lactide) in soil and in compost, Journal of Polymers and the Environment 20 (2012) 273-282.
    [37] S.M. Satti, A.A. Shah, R. Auras, T.L. Marsh, Isolation and characterization of bacteria capable of degrading poly(lactic acid) at ambient temperature, POLYMER DEGRADATION AND STABILITY 144 (2017) 392-400.
    [38] N. Hegyesi, Y. Zhang, A. Kohári, P. Polyák, X. Sui, B. Pukánszky, Enzymatic degradation of PLA/cellulose nanocrystal composites, Industrial Crops and Products 141 (2019) 111799.
    [39] X. Qi, Y.W. Ren, X.Z. Wang, New advances in the biodegradation of Poly(lactic) acid, International Biodeterioration & Biodegradation 117 (2017) 215-223.
    [40] 丁亞涵, 羅凱尹, 生物可分解性塑膠聚乳酸的降解條件研究, 臺灣農業化學與食品科學 59(1) (2021) 11-17.
    [41] E.M.B. Lima, R. Nunes Oliveira, A. Middea, I. Miranda de Castro, M.d.C. Mattos, T.T.M. Neves, L.F. da Costa, R. Neumann, M.I.B. Tavares, Degradation of PLA Biocomposites Containing Mango Seed and Organo Montmorillonite Minerals, Journal of Natural Fibers 19(5) (2022) 1783-1791.
    [42] F. Touaiti, V. Herrera, K. Oksman, Investigation of crystalline structure of plasticized poly (lactic acid)/Banana nanofibers composites, IOP Conference Series: Materials Science and Engineering 369 (2018) 012031.
    [43] S.W. Choi, H.M. Shahbaz, J.U. Kim, D.-H. Kim, S. Yoon, S.H. Jeong, J. Park, D.-U. Lee, Photolysis and TiO2 Photocatalytic Treatment under UVC/VUV Irradiation for Simultaneous Degradation of Pesticides and Microorganisms, Applied Sciences, 2020.
    [44] Q. Bao, W. Wong, S. Liu, X. Tao, Accelerated Degradation of Poly(lactide acid)/Poly(hydroxybutyrate) (PLA/PHB) Yarns/Fabrics by UV and O2 Exposure in South China Seawater, Polymers, 2022.
    [45] Y. Sun, Z. Zheng, Y. Wang, B. Yang, J. Wang, W. Mu, PLA composites reinforced with rice residues or glass fiber—a review of mechanical properties, thermal properties, and biodegradation properties, Journal of Polymer Research 29(10) (2022) 422.
    [46] K. Tomita, T. Nakajima, Y. Kikuchi, N. Miwa, Degradation of poly(l-lactic acid) by a newly isolated thermophile, Polymer Degradation and Stability 84(3) (2004) 433-438.
    [47] E.C. Hann, S. Overa, M. Harland-Dunaway, A.F. Narvaez, D.N. Le, M.L. Orozco-Cárdenas, F. Jiao, R.E. Jinkerson, A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production, Nature Food 3(6) (2022) 461-471.

    無法下載圖示 全文公開日期 2033/08/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE