簡易檢索 / 詳目顯示

研究生: 邱筱婷
Hsiao-Ting Chiu
論文名稱: 預濺鍍銅、銀對430-LSMO73高溫氧化及電性之影響
Effect of Sputtering Cu and Ag on the High-temperature Oxidation and Electrical Conductivity of 430SS-LSMO73
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 周振嘉
none
顏怡文
Yee-wen Yen,
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 119
中文關鍵詞: 固態氧化物燃料電池高溫氧化金屬雙極板ASR
外文關鍵詞: 430 Stainless Steel, Solid oxide fuel cell, High-temperature oxidation, Metallic Interconnects, area specific resistance.
相關次數: 點閱:266下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以430不銹鋼(430SS)為底材,並塗覆La0.7Sr0.3Mn3O (LSMO73)以及在塗覆LSMO73之前於430SS底材預濺鍍銀及銅銀,探討LSMO73燒結後於800℃之高溫氧化行為及導電性。實驗結果顯示,LSMO73於1200℃氮氣氣氛之燒結會發生分解,若燒結溫度降低至1100℃,則LSMO73已充分燒結且未發生分解。LSMO73經過1100℃氮氣燒結過後,於800℃空氣氣氛,具有高溫化學安定性並對430SS具保護性。LSMO73與合金界面處所產生的氧化層種類與厚度,取決於燒結過程中LSMO73與合金的反應。電性量測方面,於500℃〜800℃,430SS原材具有最高的導電性,其次依序為430塗覆LSMO73、800℃空氣預氧化48小時、800℃空氣預氧化120小時。主要影響ASR值的因素為金屬底材在高溫氧化環境下所產生的氧化層厚度及氧化物的種類。參雜低價Ag+於氧化層,可以約略降低氧化層的氧化速率,並在高溫時明顯提升氧化層的導電性。於塗覆LSMO73前的銅銀預鍍層,由於銅在高溫燒結過程中發生氧化,不僅會降低導電性,且銅會與LSMO73中的La反應,生成LaCuO4導致LSMO73分解,對導電性有不良的作用。


This study investigates the sintering phenomenon under N2 atmosphere at 1100℃ and 1200℃ for La0.7Sr0.3Mn3O (LSMO73) screen-printed by 430 Stainless Steel (430SS), meanwhile, the behavior and conductive characteristic of high temperature oxidation at 800℃ for LSMO73 after sintering is also investigated too. The experimental results shows that for 430SS and for sintering at 1200℃ under N2 atmosphere, LSMO73 will decompose, however, when the temperature is reduced to 1100℃, LSMO73 will be sintered completely and no decomposition will occur. After 1100℃ sintering under N2 atmosphere and then put it at 800℃ under air environment, LSMO73 will possess high temperature chemical stability and protective characteristic, therefore, the oxide type and thickness generated at the interface between LSMO73 and alloy is decided by the reaction between LSMO73 and alloy during the sintering process. In the electrical property measurement aspect, the major factor which affects ASR (Area specific resistance) value is the oxide thickness and oxide type (conductivity) generated under high temperature environment by metallic double electrode plate. As the oxide layer gets thicker, ASR value will get increased. Dope low valence Ag+ into oxide layer will slightly decrease the oxidation rate of the oxide layer and, under high temperature environment, obviously increase the conductivity of the oxide layer, In the aspect of increasing the wetting characteristic by using Cu, Cu will get oxidized during high temperature sintering process and the conductivity will thus be reduced, meanwhile, Cu will react with La of LSMO73 to form LaCuO4 which will in turn leads to the decomposition of LSMO73.

第一章 前言 1 第二章 文獻回顧 4  2.1 燃料電池簡介與種類 4   2.1.1 燃料電池的簡介 4   2.1.2 燃料電池的種類 5  2.2 固態氧化物燃料電池簡介與操作原理 7   2.2.1 SOFC基本元件 7    2.2.1.1 電解質 7    2.2.1.2 陽極 8    2.2.1.3 陰極 8    2.2.1.4 雙極板(Interconnect) 9   2.2.2 SOFC的操作原理 9  2.3 高溫氧化 13   2.3.1 氧化機制 13    2.3.1.1 化學計量氧化物 13    2.3.1.2 非化學計量氧化物 14   2.3.2 參雜對氧化物缺陷結構的影響 15  2.4 SOFC雙極板 17   2.4.1 LaCrO3基陶瓷材料雙極板 18   2.4.2 耐高溫金屬材料雙極板 20    2.4.2.1 Ni基材料 21    2.4.2.2 Cr基材料 22    2.4.2.3 Fe基材料 23  2.5 陰極端金屬雙極板與保護塗層界面反應 33   2.5.1 LaCrO3基 33   2.5.2 La1-XSrXMnO3 33 第三章 實驗方法 40  3.1 實驗流程 40  3.2 試片的製備 41   3.2.1 合金成份分析 41   3.2.2 材料準備及表面清洗 41   3.2.3 試片的製作 42    3.2.3.1 預氧化試片 42    3.2.3.2 濺鍍銀試片 42    3.2.3.3 濺鍍銅銀複合層 43  3.3 LSMO73膠體製作及網印 44   3.3.1 LSMO73粉末的製作 44   3.3.2 LSMO73膠體的製作 45   3.3.2 LSMO73網印與燒結 45  3.4 高溫氧化實驗 48  3.5 電性量測 48   3.5.1 電極製作 49   3.5.2 電性量測 49  3.6 實驗設備 54 第四章 實驗結果與討論 55  4.1 430SS 55   4.1.1 LSMO73的燒結 55   4.1.2 高溫氧化 57    4.1.2.1 430SS原材 57    4.1.2.2 430-LSMO73 58   4.1.3 電性量測 59  4.2 披覆銀對於不鏽鋼雙極板之效果 71   4.2.1 430-A 71   4.2.2 430-A的LSMO73燒結 71   4.2.3 430-A-LSMO73的高溫氧化 73   4.2.3 電性量測 73  4.3 披覆銅銀對於不銹鋼雙極板之效果 80   4.3.1 430-CA-LSMO73的燒結 80   4.3.2 430-CA-LSMO73的高溫氧化 81   4.3.3 電性量測 82  4.4 導電電極的影響 90 第五章 結論 92 參考文獻 93 未來研究之建議 100 附錄A 101 作者簡介 102

1. 林昇佃、余子隆、張幼珍、翁芳柏、李碩仁、林育才、吳和生、魏榮宗、林修正、賴子珍、曾盛恕、詹世弘,燃料電池:新世紀能源,滄海圖書,台中,民國93年3月。
2. 韓敏芳、彭蘇萍,固態氧化物燃料電池材料及製備,科學出版社,北京,2004年2月。
3. 本間琢也,圖解燃料電池百科,全華科技圖書股份有限公司,台北,2004年11月。
4. 溫武義,燃料電池技術,全華科技圖書股份有限公司,台北,93年8月。
5. A. Boudghene Stambouli and E. Traversa, “Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy”, Energy Reviews, v 6, n 5, October, (2002) P 433-455.
6. D. J. Garvie, R. H. J. Hannink, and M. V. Swain, in:“Transformation Toughening of Ceramic”, CRC Press, Inc. (1989) P 41.
7. R. C. Garvie, “Zirconia Dioxide and Some of Its Binary System”, in “High Temperature Oxides”, Vol.5, Ed. By A. M. Alper, Academic Press, New York, (1970) Chap. 4.
8. H. Itoh, Y. Hiei, T. Yamamoto, M. Mori, and T. Watanable, “Optimized Mixture Ratio in YSZ-Supported Ni-YSZ Aonde Material for SOFC”, Solid Oxide Fuel Cell VII, Proceedings of the Seventh International Symposium, Proceeding Volume 2001-16, P 750-758.
9. S. Linderoth, P. V. Hendriksen, M. Mogensen, and N. Langvad, “Investigations of metallic alloys for use as interconnects in solid oxide fuel cell stacks”, J. Mater. Sci., (1996) 31, P 5077-5082.
10. 松島敏雄: 電學論B, Vol. 115-B, No. 5, (1995) P 532-537.
11. A. A. Khanlou, F. Tietz, I. C. Vinke, and D. Stöver, “Elwctrochemical and Microstructural Study of SOFC Cathode Based on La0.65Sr0.3MnO3 and Pr0.65Sr0.3MnO3”, Solid Oxide Fuel Cell VII, Proceedings of the Seventh International Symposium, Proceeding Volume 2001-16, P 476-484.
12. Y. Ohno, S. Nagata, and H. Sato; “Properites of Oxiders for High Temperature Solid Electroltye Fuel Cell”, Solid Satae Ionics, Vol. 9&10, P 1001-1007.
13. N. Q. Minh and T. Takehikp, Elsevier, New York, 136-137 (1995).
14. J. Santen and G. Jonker, Physica XVI, No. 7-3, 599-560 (1950).
15. J. Li, Q. Huang, Z. W. Li, L. P. You, S. Y. Xu, and C. K. Ong, “Enhanced Magnetoresistance in Ag-Doped Granular La2/3Sr1/3MnO3 Thin Films Prepared by Dual-Beam Pulsed-Laser Deposition”, J. Appl. Physi., 89[6], 7428-7430 (2001).
16. H. Yokokawa, N. Sakai, T. Horita, and K. Yamaji, “Recent topics on oxide ion conductors”, Electrochemistry, v 69, n 10, October, 2001, p 797.
17. J. M. Ralph, A. C. Schoeler, and M. Krumpelt, ”Materials for lower temperature solid oxide fuel cells”, Journal of Materials Science, v 36, n 5, Mar1, (2001) p 1161-1172.
18. S. P. S. Badwal, “Stability of solid oxide fuel cell components”, Solid State Ion. 143 (2001) P 39.
19. N. Birks and G. H. Meier, in: “Introduction to High Temperature Oxidation of Metals,” Edward Arnold, London, (1983) P 34-41.
20. 李美栓,金屬的氧化物,冶金工業出版社,北京,2001年,11月。
21. N. Sakai, T. Kawada, H. Yokokawa, M.Dokiya, M. Mori, and T. Iwata, “Structure and polarization characteristics of solid oxide fuel cell anodes”, Solid State Ionics, v 40-41, n Pt1, Aug, 1990, p 402-406.
22. N. Q. Minh. J. Am. Ceram. Soc. 76 (1993) P 563.
23. R. A. De Souza and J. A. Kilner. “Oxygen transport in La1-xSrxMn1-yCoyO3±δ perovskites. Part II. Oxygen surface exchange”, Solid State Ionics, 126, 153-162 (1999).
24. W. J. Quadakkers, H. Greiner, and W. Kock, in: U. Bossel (Ed.), Proceedings of the First European SOFC Forum, Lucerne, Switzerland, 1994, p.525.
25. W. J. Quadakker, H. Greiner, M. Hansel, A. Pattanaik, A. S. Khanna, and W. Mallener. “Compatibility of perovskite contact layers between cathode and metallic interconnector plates of SOFCs”, Solid State Ionics 91 (1996) 55-67.
26. D. M. Englamd and A. V. Virkar, “Oxidation Kinetics of Some Nickel-Based Superalloy Foils and Electronic Resistance of the Oxide Scale Formed in Air Part I”, J. Electrochem. Soc. 146 (1999) 3196-3202.
27. A. V. Virkar and J. W. Kim, “Planar solid oxide fuel cell with metallic foil interconnect”, US Pat. 6106967.
28. S. J. Geng, J. H. Zhu, and Z. G. Lu, “Evaluation of Haynes 242 alloy as SOFC interconnect material”, Solid State Ionics 177 (2006) P 559-568.
29. Li Jian, Pu Jian, Xiao Jianzhong, and Qian Xiaoliang. “Oxidation of Haynes 230 alloy in reduced temperature solid oxide fuel cell environments”, Journal of Power Sources. V 139, n 1-2, Jan 4, 2005, P 182-187.
30. Fuel Cell Handbook, The US Department of Energy, 2002.
31. E. I. Tiffee, W. Weising, M. Janousek, W. M. Schiessl, and H. Greiner, “Ceramic and metallic components for a planar SOFC”, Ber. Bunsenges Phys. Chem. V 94 (1990) 978-983.
32. B. E. Liebert. “Electrical characterization of a chromium alloy interconnect material”, in: B. Thorstensen (Ed.), Proceedings of the Sixth Interantional Symposium on Solid Oxide Fuel Cells (SOFC VI), Honolulu, Hawaii, 17-22 October (1999) P 722-730.
33. W. Z. Zhu and S. C. Deevi. “Opportunity of metallic interconnects for solid oxide fuel cells: A status on contact resistance”, Materials Research Bulletin 38 (2003) P 957-972.
34. D. Mayer, W. W. Smeltzer, J. D. Mackenzic, and C. E. Birchenall, Corrosion, 109 (1961).
35. M. Lambertin, A. Stoklosa, and W. W. Smeltzer, “OXIDATION PROPERTIES OF Fe-5Cr-4Al (wt. %) ALLOYS IN OXYGEN AT TEMPERATURES 1000 degree C-1320 degree C”, Oxid. Met., Vol. 15, (1981) 355.
36. E. A. Loria, Mte. Trans. A, 11A 537 (1980).
37. T. Brylewski, M. Nanko, T. Maruyama, and K. Przybylski, “Application of Fe-16Cr ferritic alloy to interconnector for a solid oxide fuel cell”, Solid State Ionics 143(2001) 131.
38. H. Kurokawa, k. Kawamura, and T. Maruyama, “Oxidation behavior of Fe-16Cr alloy interconnect for SOFC under hydrogen potential gradient”, Solid State Ionics 168(2004) 13.
39. Hideto Kurokawa, Kenichi Kawamura, and Toshio Maruyama. “Oxidation behavior of Fe-16Cr alloy interconnect for SOFC under hydrogen potential gradient”, Solid State Ionics 168 (2004) 13-21.
40. M. G. E. Cox, B. Mcenanay, and V. D. Scott, “CHEMICAL DIFFUSION MODEL FOR PARTITIONING OF TRANSITION ELEMENTS IN OXIDE SCALES ON ALLOYS”, Philia. Mag. 26 (1972) 839-851.
41. R. E. Lobnig, H. P. Schmidt, K. Hennesen, and H. J. Grabke, “Diffusion of cations in chromia layers grown on iron-base alloys”, Oxide. Met. 37 (1992) P 81-93.
42. R.K. Wild. “High Temoerature Oxidation of Austenitic Stainless Steel in Low Oxygen Pressure”, Corros. Sci. 17 (1977) 87.
43. I. Barin. “Thermochemical Data of Pure Substances”, 3rd edition, VCH Verlagsgesellschaft, Weinheim, 1995.
44. K. Q. Huang, P. Y. Hou, and J. B. Goodenough. “Characterization of iron-based alloy interconnects for reduced temperature solid oxide fuel cells”, Solid State Ionics 129 (2000) P 237-250.
45. I. Antepara, I. Villarreal, L. M. Rodriguez-Martinez, N. Lecanda, U. Castro, and A. Laresgoiti. “Evaluation of ferritic steels for use as interconnects and porous metal supports in IT-SOFCs”, Journal of Power Sources 151 (2005) 103–107.
46. J. H. Zhua, Y. Zhanga, A. Basua, Z. G. Lua, M. Paranthamanb, D. F. Leec, and E. A. Payzantc. Surface and Coatings Technology 177 –178 (2004) 65–72.
47. T. Kadowaki, T. Shiomitsu, E. Matsuda, H. Nakagawa, H. Tsuneizumi, and T. Maaruyama, Solid State Ionics 67 (1993) 25.
48. Y. D. Zhen, S. P. Jiang, and S. Zhang, “Early interaction between Fe-Cr alloy metallic interconnect and Sr-doped LaMnO3 cathodes of solid oxide fuel cells”, Vincent Tan. Journal of the European Society 25 (2005) 747-758.
49. H. W. Nie, T.-L. Wen, and H. Y. Tu. Materials Research Bulletin 38 (2003) 1531-1536.
50. A. V. Virkar and D. M. England, Solid State Fuel Cell Interconnector, United States Patent 6,054,231 (25 April 2000).
51. G. V. Samsonov, The Oxide Handbook, IFI Plenum, New York,1973.
52. Jong-Hee Kima, Rak-Hyun Songa, and Sang-Hoon Hyunb, “Effect of slurry-coated LaSrMnO3 on the electrical property of Fe–Cr alloy for metallic interconnect of SOFC”, Solid State Ionics. 174 (2004) 185–191.
53. E. Batawi, W. Glatz, W. Kraussler, and M. Janousek, “Oxidation resistance and performance in stack tests of near-net-shaped chromium-based interconnects”, S. C. Singhal, M. Dokiya, Proceedings of the Sixth Interantional Symposium on Solid Oxide Fuel Cells (SOFC VI), Honolulu, Hawaii, 17-22 October 1999, pp. 731-765.
54. W. J. Quadakkers, H. Greiner, M. Hansel, A. Pattanaik, A. S. Khanna, and W. Mallener. “Compatibility of perovskite contact layers between cathode and metallic interconnector plates of SOFCs”, Solid State Ionics 91 (1996) 55-67.
55. Y. Yoo and M. Daugo, “The effect of protective layers fromed by electrophoretic deposition on oxidation and performance of metallic interconnects”, in: H. Yokokawa, S. C. Singhal, Proceedings of the Seventh Interantional Symposium on Solid Oxide Fuel Cells (SOFC VII), Ysukuba, Ibaraki, Japan, 3-8 June (2001) P 837-846.
56. N.Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells, Elsevier, Amsterdam, (1995) P 182.
57. V. A. Cherepanov, L. Yu. Barkhatova, and V. I. Voronin, “Phase Equilibria in the La-Sr-Mn-O System”, Journal of Solid State Chemistry, Vol. 134, pp. 38-44 (1997).
58. 呂駿嶸,固態氧化物燃料電池金屬雙極板之高溫氧化及電性研究,國立台灣科技大學機械研究所碩士學位論文,民國95年7月,台北。
59. A. L. Marasco and D. J. Young, “Oxidation of iron-chromium- manganese alloys at 900°C”, Oxidation of Metals. 36 (1991) P 157.
60. R. E. Lobnig, H. P. Schmidt, K. Hennesen, and H. J. Grabke, “Diffusion of cations in chromia layers grown on iron-base alloys”, Oxidation of Metals. 37 (1992). P 81-93
61. P. Kofstad, Nonstoichiometry, in: Diffusion and Electrical Conduct- ivity in Binary Metal Oxides (Wiley-lnterscience, New York, 1972 ).
62. 王朝正,鐵-錳-鋁-鉻合金的高溫氧化,國立清華大學材料科學工程研究所博士學位論文,民國77年7月,新竹。

QR CODE