簡易檢索 / 詳目顯示

研究生: 托馬斯
Tomas Esparza Sola
論文名稱: 轉矩響應優化與感應電機驅動器的最大直流母線利用率
Torque Response Optimization with Maximum DC Bus Utilization for Induction Motor Drives
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 楊士進
Shih-Chin Yang
劉添華
Tian-Hua Liu
陳亮光
Liang-Kuang Chen
謝耀慶
Yao-Ching Hsieh
劉宇晨
Yu-Chen Liu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 223
中文關鍵詞: 定子磁鏈定向直接磁場定向控制直接轉矩控制轉矩脈動動態響應定 子磁鏈估計過調製
外文關鍵詞: stator flux orientation, direct field-oriented control, direct torque control, torque ripple, dynamic response, stator flux estimation, overmodulation
相關次數: 點閱:202下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在對感應電機最有展望的控制方法進行更廣泛的研究。採用的控制方式為空間向量調製直接轉矩控制以及傳統的直接轉矩控制以提高直流電壓利用率。本文提出的方案體現出兩種控制方法的優點。在線性區域中,它允許低轉矩脈動和低電流諧波失真。在過調變區域中,它允許快速的扭矩響應直到六步操作區域。這兩個區域中,電機參數完全獨立。本文提供了一種能夠實現兩種控制法之間平滑切換的方法。非線性會影響定子磁通的估算角,進而導致無法將轉矩和磁通解耦。為了克服此問題,提出了一種新的基於 PI 的控制方案以及對解耦項計算的簡化。此外,本文還提出了一種新的感應電機直接轉矩控制法,該方法能夠將轉矩漣波量降至最低,同時保留所有傳統直接轉矩控制的優點。轉矩及電流漣波為傳統直接轉矩控制法的主要缺點。為了解決這個問題,對傳統直接轉矩控制法的轉矩漣波的主要來源進行了分析。提出了一種能夠在所有的速度下降低轉矩漣波的方法。並且將所提出的演算法性估與近期發布的相似控制法進行了比較及分析。並基於理論分析、模擬和硬體實驗,實現本文所提出並呈現的控制方式。


    This dissertation aims to provide an extensive study of the most promising control strategies for induction motors (IM). Furthermore, a method to extend the DC bus utilization on an IM by using a combination of Space-Vector Modulated Direct Torque Control (DTC–SVM) and conventional DTC is presented. The scheme presented in this dissertation exploits the advantages of both control methods. During the linear region, it allows for a low torque ripple and low current harmonic distortion (THD). During the overmodulation region, it allows for the fastest torque response up to the six-step operation region. In both regions, there is complete independence of the motor parameters. A method to achieve a smooth transition between the two control schemes is provided. Non-linearities affect the stator flux angle estimation, which leads to the inability to decouple torque and flux. To overcome this problem, a novel PI-based control scheme, as well as a simplification of the decoupling terms’ calculation, are proposed. In addition, a new direct torque control (DTC) method of an induction motor that minimizes torque ripple while preserving all the conventional DTC advantages is presented in this dissertation. Large torque ripple and current ripple are the main drawbacks of the conventional DTC. To address this problem, this work gives a qualitative analysis of the main torque ripple sources of conventional DTC. A novel strategy to reduce torque ripple in the whole speed range is proposed. The performance of the proposed algorithm is evaluated and compared with a recently published method that aims for the same goals that are pursued in this dissertation, as well as with the conventional DTC. The analysis of the methods presented in this dissertation has been carried out on the basis of the results obtained by theoretical analysis, simulations, and hardware implementation.

    Table of Contents 論 文 摘 要 i Abstract ii Acknowledgement iii Table of Contents iv List of Figures x List of Tables xvii CHAPTER 1. INTRODUCTION 1 CHAPTER 2. FUNDAMENTALS OF INDUCTION MOTOR DRIVES 5 2.1 Introduction 5 2.2 Mathematical Model of the Induction Motor in a Three-Axes Frame 5 2.2.1 Voltage Equations 6 2.2.1.1 Stator Voltage 6 2.2.1.2 Rotor Voltage 6 2.2.2 Flux Equations 7 2.2.2.1 Stator Flux 7 2.2.2.2 Rotor Flux 8 2.3 Steady State Equivalent Circuit of an Induction Motor 9 2.3.1 The Rotor Circuit Model 10 2.3.2 The Final Equivalent Circuit 12 2.3.3 Derivation of the Induction Motor Induced Torque Equation 14 2.3.3.1 Maximum (Pullout) Torque in an Induction Motor 16 2.4 Mathematical Model of the Induction Motor in a Two-Axes Stationary Frame 18 2.4.1 Voltage Equations 21 2.4.1.1 Stator Voltage 21 2.4.1.2 Rotor Voltage 22 2.4.2 Flux Equations 23 2.4.2.1 Stator Flux 23 2.4.2.2 Rotor Flux 26 2.4.3 Power and Torque Equations in the Two-Axes Stationary Frame 26 2.5 Mathematical Model of the Induction Motor in a Two-Axes Synchronous Frame 27 2.5.1 Voltage Equations 28 2.5.1.1 Stator Voltage 28 2.5.1.2 Rotor Voltage 29 2.5.2 Flux Equations 30 2.5.2.1 Stator Flux 30 2.5.2.2 Rotor Flux 31 2.5.3 Power and Torque Equations in the Two-Axes Synchronous Frame 31 2.5.4 Equivalent Circuit of the Induction Motor in the Synchronous Frame 32 2.6 Voltage Source Inverter (VSI) 32 2.7 Pulse Width Modulation (PWM) 36 2.7.1 Sinusoidal Pulse Width Modulation (SPWM) 37 2.7.2 Space Vector Pulse Width Modulation (SVPWM) 38 2.7.2.1 Sector Identification 41 2.7.2.2 Time Duration of Each Voltage Vector 46 2.7.2.3 Switching Time of Each Transistor 61 2.7.2.4 Limit of the Voltage Reference Vector 65 2.7.3 Discontinuous Space Vector Pulse Width Modulation (DPWM) 66 2.7.3.1 60º DPWM 67 2.7.3.2 60º (+30º) DPWM 71 2.7.3.3 60º (–30º) DPWM 73 2.7.3.4 Comparison of Harmonic Performance 76 2.7.4 Overmodulation Methods 77 CHAPTER 3. VECTOR CONTROL AND DIRECT TORQUE CONTROL OF INDUCTION MOTOR 81 3.1 Introduction 81 3.2 Rotor Field-Oriented Control 81 3.2.1 Slip Speed Calculation 82 3.2.2 Torque Equation 84 3.2.3 Indirect Rotor Field-Oriented Control Implementation 84 3.2.3.1 Design of the Current Control Loop 87 3.2.3.2 Design of the Speed Control Loop 90 3.2.4 Field Weakening 93 3.2.4.1 Voltage-Limit Condition 93 3.2.4.2 Current-Limit Condition 95 3.2.4.3 Constant Torque Region. Maximum Torque per Ampere 97 3.2.4.4 Field Weakening Region I. Constant Power Region 100 3.2.4.5 Field Weakening Region II. Breakdown Torque Region 102 3.2.5 Flux Regulator of Induction Machine 104 3.3 Stator Field-Oriented Control 107 3.4 Direct Torque and Flux Control (DTC) 108 3.4.1 Conventional Direct Torque Control (DTC) 110 3.4.1.1 Analysis of Torque Ripple Sources in the Conventional DTC 113 3.4.2 Virtual Space Vector-Based DTC 115 3.4.3 Direct Self-Control (DSC) 116 CHAPTER 4. DIRECT TORQUE AND FLUX CONTROL IMPLEMENTING SPACE VECTOR MODULATION (DTC-SVM) 119 4.1 Introduction 119 4.2 Review of the DTC-SVM Architectures 119 4.2.1 DTC-SVM Architecture with Flux Control in Closed-Loop Fashion 120 4.2.2 DTC-SVM Architecture with Torque Control in Closed-Loop Fashion 121 4.2.3 DTC-SVM Architecture with Flux and Torque Control in Closed-Loop Fashion in the Frame 122 4.2.4 DTC-SVM Architecture with Flux and Torque Control in Closed-Loop Fashion in the Stator Flux Coordinate System 123 4.2.5 Concluding Remarks on the Reviewed DTC-SVM Architectures 124 4.2.6 DTC-SVM Architecture with Flux and Torque Control in Closed-Loop Fashion in the Stator Flux Coordinate System. Principles and Controller Design 124 4.2.6.1 Flux Controller Design 126 4.2.6.2 Torque Controller Design 130 4.2.6.3 Design of the Speed Control Loop 134 CHAPTER 5. INDUCTION MOTOR VARIABLE ACQUISITION 137 5.1 Introduction 137 5.2 Speed Measurement 137 5.2.1 Fixed Time Method for Speed Measurement 140 5.2.2 Fixed Position Method for Speed Measurement 141 5.3 Estimation of Inverter Output Voltage 142 5.3.1 Dead-Time Effect 143 5.3.2 Dead-Time Compensation 144 5.3.2.1 Positive Current: 144 5.3.2.2 Negative Current: 147 5.4 Stator Flux Estimation 149 5.4.1 Voltage Model 149 5.4.2 Current Model 151 5.4.3 Compensation of the Nonlinearities Affecting the Stator Flux Angle Estimation 153 5.5 Torque Estimation 156 5.6 Rotor Speed Estimation 156 CHAPTER 6. EXTENDING DC BUS UTILIZATION FOR INDUCTION MOTORS WITH STATOR FLUX ORIENTED DIRECT TORQUE CONTROL 158 6.1 Introduction 158 6.2 Combination of DTC–SVM and Conventional DTC 160 6.3 Transition Between Control Modes 162 6.3.1 Calculation of and 165 6.4 Simulation and Experimental Results 166 6.5 Conclusion 176 CHAPTER 7. IMPROVED DIRECT TORQUE CONTROL OF INDUCTION MOTORS FOR TORQUE RIPPLE MINIMIZATION 178 7.1 Introduction 178 7.2 Proposed Torque Ripple Minimization Algorithm 179 7.2.1 Minimum Torque Ripple Algorithm when 179 7.2.2 Minimum Torque Ripple Algorithm when 183 7.2.3 Generation 184 7.3 Experimental Results and Discussions 185 7.3.1 Maximum Attainable Speed and Acceleration Process 186 7.3.2 Steady-State Performance 188 7.4 Conclusion 193 CHAPTER 8. CONCLUSION AND FUTURE WORK 194 References. 195

    References
    [1] B. K. Bose, Modern Power Electronics and AC Drives. Englewood Cliffs, NJ, US: Prentice Hall, 2002.
    [2] M.P. Kazmierkowski, R. Krishnan, F. Blaabjerg, "Control in Power Electronics Selected Problems", Academic Press, 2002.
    [3] K. Hasse, "Drehzahlregelverfahren fur schnelle Umkehrantriebe mit stromrichtergespeisten Asynchron-Kurzschlusslaufermotoren", in Regelungstechnik 20, 1972, pp.60-66.
    [4] R. Marino, P. Valigi, "Nonlinear control of induction motors: a simulation study", in European Control Conference, Grenoble, France, 1991, pp.1057-1062.
    [5] R. Marino, S. Peresada, P. Valigi, "Adaptive partial feedback linearization of induction motors", in Proc. of the 29th Conference on Decision and Control, Honolulu, Hawaii, Dec. 1990, pp.3313-3318.
    [6] R. Ortega, A. Loria, P. J. Nicklasson, H. Sira-Ramirez, "Passivity-based Control of Euler-Lagrange Systems", Springer Verlag, London, 1998.
    [7] I. Takahashi, T. Noguchi, "A new quick-response and high efficiency control strategy of an induction machine", IEEE Trans. on Industrial Application, Vol. IA-22, no.5, Sept./Oct. 1986, pp.820-827.
    [8] U. Baader, M. Depenbrock, G. Gierse, "Direct Self Control (DSC) of Inverter-Fed-Induction Machine - A Basis for Speed Control Without Speed Measurement", IEEE Trans. of Industry Applications, Vol. 28, No. 3 May/June 1992, pp.581-588.
    [9] M. Depenbrock, "Direct Self Control of Inverter-Fed Induction Machines", IEEE Trans. on Power Electronics, Vol. PE-3, no.4, Oct. 1988, pp.420-429.
    [10] M. Depenbrock, "Direct self-control of the flux and rotary moment of a rotary-field machine", U.S. Patent 4,678,248.
    [11] G. S. Buja and M. P. Kazmierkowski, "Direct torque control of PWM inverter-fed AC motors - a survey," in IEEE Transactions on Industrial Electronics, vol. 51, no. 4, pp. 744-757, Aug. 2004, doi: 10.1109/TIE.2004.831717.
    [12] Z. Wang, J. Chen, M. Cheng and K. T. Chau, "Field-Oriented Control and Direct Torque Control for Paralleled VSIs Fed PMSM Drives with Variable Switching Frequencies," in IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2417-2428, March 2016, doi: 10.1109/TPEL.2015.2437893.
    [13] R. Ortega, N. Barabanov, G. Escobar and E. Valderrama, "Direct torque control of induction motors: stability analysis and performance improvement," in IEEE Transactions on Automatic Control, vol. 46, no. 8, pp. 1209-1222, Aug. 2001, doi: 10.1109/9.940925.
    [14] C. Patel, R. P. P., A. Dey, R. Ramchand, K. Gopakumar and M. P. Kazmierkowski, "Fast Direct Torque Control of an Open-End Induction Motor Drive Using 12-Sided Polygonal Voltage Space Vectors," in IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 400-410, Jan. 2012, doi: 10.1109/TPEL.2011.2159516.
    [15] T. G. Habetler, F. Profumo, M. Pastorelli and L. M. Tolbert, "Direct torque control of induction machines using space vector modulation," in IEEE Transactions on Industry Applications, vol. 28, no. 5, pp. 1045-1053, Sept.-Oct. 1992, doi: 10.1109/28.158828.
    [16] Z. Zhang, R. Tang, B. Bai and D. Xie, "Novel Direct Torque Control Based on Space Vector Modulation with Adaptive Stator Flux Observer for Induction Motors," in IEEE Transactions on Magnetics, vol. 46, no. 8, pp. 3133-3136, Aug. 2010, doi: 10.1109/TMAG.2010.2051142.
    [17] C. Lascu, S. Jafarzadeh, M. S. Fadali and F. Blaabjerg, "Direct Torque Control with Feedback Linearization for Induction Motor Drives," in IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 2072-2080, March 2017, doi: 10.1109/TPEL.2016.2564943.
    [18] Ozkop, Emre & Okumuş, Halil. (2008). Direct torque control of induction motor using space vector modulation (SVM-DTC). 2008 12th International Middle East Power System Conference, MEPCON 2008. 368 - 372. 10.1109/MEPCON.2008.4562350.
    [19] Jun-Koo Kang and S. -K. Sul, "New direct torque control of induction motor for minimum torque ripple and constant switching frequency," in IEEE Transactions on Industry Applications, vol. 35, no. 5, pp. 1076-1082, Sept.-Oct. 1999, doi: 10.1109/28.793368.
    [20] S. Suresh and R. P. P., "Virtual Space Vector-Based Direct Torque Control Schemes for Induction Motor Drives," in IEEE Transactions on Industry Applications, vol. 56, no. 3, pp. 2719-2728, May-June 2020, doi: 10.1109/TIA.2020.2978447.
    [21] Benoît, R., Francois, B., Degobert, P., & Hautier, J. P. “Vector Control of Induction Machines Desensitisation and Optimisation Through Fuzzy Logic”. Springer-Verlag London 2012.
    [22] Kwang Hee Nam. “AC Motor Control and Electrical Vehicle Applications” Second Edition. 6000 Broken Sound Parkway NW, Suite 300. Taylor & Francis Group, LLC, 2019.
    [23] Ned Mohan. “Advanced Electric Drives. Analysis, Control, and Modeling Using MATLAB/Simulink”. Hoboken, New Jersey. John Wiley & Sons, Inc, 2014.
    [24] Peter Vas, “Sensorless Vector and Direct Torque Control”. Oxford, New York: Oxford University Press, 1998.
    [25] Stephen J. Chapman, “Electric Machinery Fundamentals” Fifth Edition. New York, NY 10020. McGraw-Hill. 2012.
    [26] Jimmie J. Cathey, “Electric Machines: Analysis and Design Applying MATLAB”. New York, NY 10020. McGraw-Hill. 2001.
    [27] L. Ben-Brahim, "The analysis and compensation of dead-time effects in three phase PWM inverters," IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200), 1998, pp. 792-797 vol.2, doi: 10.1109/IECON.1998.724194.
    [28] J. Holtz, "Pulsewidth modulation for electronic power conversion", Proceedings of the IEEE, Vol. 82, Issue: 8, Aug. 1994, pp.1194-1214.
    [29] D. Grahame Holmes and Thomas A. Lipo “Pulse Width Modulation for Power Converters Principles and Practice” 445 Hoes Lane, Piscataway, NJ 08854. IEEE Press.
    [30] Hamid A. Toliyat and Steven G. Campbell “DSP-Based Electromechanical Motion Control” 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. CRC Press LLC.
    [31] Sang-Hoon Kim “Electric Motor Control DC, AC and BLDC Motors” Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands. Elsevier.
    [32] T. G. Habetler, F. Profumo, M. Pastorelli, and L. M. Tolbert, “Direct torque control of induction machines using space vector modulation,” IEEE Trans. Ind. Appl., vol. 28, pp. 1045−1053, Sep./Oct. 1992.
    [33] H. Mochikawa, T. Hirose, and T. Umemoto, “Overmodulation of voltage source PWM inverter,” Conf. Rec. JIEE-IAS Conf., pp. 466−471, 1991.
    [34] J.-K. Seok and S. Sul, “A new overmodulation strategy for induction motor drive using space vector PWM,” Conf. Rec. IEEE APEC95, pp. 211−216, Mar. 1995.
    [35] S. Bolognani and M. Zigliotto, “Novel digital continuous control of SVM inverters in the overmodulation range,” IEEE Trans. Ind. Appl., vol. 33, no. 2, pp. 525−530, Mar./Apr. 1997.
    [36] Y. Kwon, et al., “Six-Step Operation of PMSM With Instantaneous Current Control,” IEEE Trans. on Ind. Appl., vol. 50, no. 4, pp. 2614−2625, Jul./Aug. 2014.
    [37] Luca Corradini, Dragan Maksimovic, Paolo Mattavelli and Regan Zane “Digital control of high-frequency switched-mode power converters”. Hoboken, New Jersey. John Wiley & Sons, Inc, 2015.
    [38] Sang-Hoon Kim and S. -K. Sul, "Maximum torque control of an induction machine in the field weakening region," in IEEE Transactions on Industry Applications, vol. 31, no. 4, pp. 787-794, July-Aug. 1995, doi: 10.1109/28.395288.
    [39] Nguyen Phung Quang and Jörg-Andreas Dittrich “Vector Control of Three-Phase AC Machines System Development in the Practice” Berlin Heidelberg. Springer-Verlag. 2015.
    [40] S. Wang, J. Kang, M. Degano, A. Galassini and C. Gerada, "An Accurate Wide-Speed Range Control Method of IPMSM Considering Resistive Voltage Drop and Magnetic Saturation," in IEEE Transactions on Industrial Electronics, vol. 67, no. 4, pp. 2630-2641, April 2020, doi: 10.1109/TIE.2019.2912766.
    [41] J. Holtz and A. Khambadkone, “A vector controlled induction motor drive with self commissioning scheme,” IEEE Trans. Ind. Elect., vol. 38, no. 5, pp. 322−327, 1991.
    [42] X. Xu and D.W. Novotny, “Selection of the flux reference for induction machine drive in the field weakening region”, IEEE Trans. Ind. Appl., vol. 28, no. 6, pp. 1353−1358, 1992.
    [43] A. Steimel, "Direct Self-Control and Synchronous Pulse Techniques for High-Power Traction Inverters in Comparison", IEEE Transactions on Industrial Electronics, Vol. 51, Issue: 4, Aug. 2004, pp.810-820.
    [44] A. M. Walczyna and R. J. Hill, "Novel PWM strategy for direct self-control of inverter-fed induction motors," ISIE '93 - Budapest: IEEE International Symposium on Industrial Electronics Conference Proceedings, 1993, pp. 610-615, doi: 10.1109/ISIE.1993.268735.
    [45] A. M. Walczyna, "Reduction of current distortions of VSI-fed induction machine controlled by DSC method-generalized approach," ISIE '93 - Budapest: IEEE International Symposium on Industrial Electronics Conference Proceedings, 1993, pp. 457-462, doi: 10.1109/ISIE.1993.268762.
    [46] S.A. Mir, M.E. Elbuluk, D.S. Zinger, "Fuzzy implementation of direct self-control of induction machines", IEEE Transactions on Industry Applications, Vol. 30, Issue: 3, May-June 1994, pp.729-735.
    [47] K.L. Shi, T.F. Chan, Y.K, Wong, S.L. Ho, "Direct self control of induction motor based on neural network", IEEE Transactions on Industry Applications, Vol. 37, Issue: 5, Sept.-Oct. 2001, pp.1290-1298.
    [48] Kyo-Beum Lee, Joong-Ho Song, Ick Choy and Ji-Yoon Yoo, "Torque ripple reduction in DTC of induction motor driven by three-level inverter with low switching frequency," in IEEE Transactions on Power Electronics, vol. 17, no. 2, pp. 255-264, March 2002, doi: 10.1109/63.988836.
    [49] Y. Xue, X. Xu, T.G. Habetler, D.M. Divan, "A low cost stator flux oriented voltage source variable speed drive", Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting, Vol.1, 7-12 Oct. 1990, pp.410-415.
    [50] Joong-Hui Lee, Chang-Gyun Kim, Myung-Joong Youn, "A dead-beat type digital controller for the direct torque control of an induction motor", IEEE Transactions on Power Electronics, Vol. 17, Issue: 5, Sept. 2002, pp.739-746.
    [51] P.Z. Grabowski, M.P. Kazmierkowski, B.K. Bose, F. Blaabjerg, "A simple direct-torque neurofuzzy control of PWM-inverter-fed induction motor drive", IEEE Transactions on Industrial Electronics, Vol. 47, Issue: 4, Aug. 2000, pp.863 - 870.
    [52] C. Lascu, A.M. Trzynadlowski, "Combining the principles of sliding mode, direct torque control, and space-vector modulation in a high-performance sensorless AC drive", IEEE Transactions on Industry Applications, Vol. 40, Issue: 1, Jan.-Feb. 2004, pp.170-177.
    [53] C. Lascu, I. Boldea, F. Blaabjerg, "Variable-Structure Direct Torque Control-A Class of Fast and Robust Controllers for Induction Machine Drives", IEEE Transactions on Industrial Electronics, Vol. 51, Issue: 4, Aug. 2004, pp.785-792.
    [54] Z. Yan, C. Jin, V. Utkin, "Sensorless Sliding-Mode Control of Induction Motors", IEEE Transactions on Industrial Electronics, Vol. 47, Issue: 6, Dec. 2000, pp.1286-1297.
    [55] D. Casadei, G. Serra, A. Tani, "Constant frequency operation of a DTC induction motor drive for electric vehicle", Proc. of ICEM Conf., Vol. 3, 1996, pp. 224-229.
    [56] Minghua Fu, Longya Xu, "A novel sensorless control technique for permanent magnet synchronous motor (PMSM) using digital signal processor (DSP)", Proceedings of the IEEE 1997 National Aerospace and Electronics Conference, NAECON 1997, Vol. 1, 14-17 July 1997, pp.403-408.
    [57] Minghua Fu, Ling Xu, "A sensorless direct torque control technique for permanent magnet synchronous motors", Power Electronics in Transportation, 22-23 Oct. 1998, pp.21-28.
    [58] Minghua Fu, Longya Xu, "A sensorless direct torque control technique for permanent magnet synchronous motors", Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE Industry Applications Conference, Vol. 1, 3-7 Oct. 1999, pp.159-164.
    [59] D. Świerczyński, M. Żelechowski, "Universal structure of direct torque control for AC motor drives", Przegląd Elektrotechniczny, No. 5/2004, pp.489-492.
    [60] F. Hoffman, M. Janecke, "Fast Torque Control of an IGBT-Inverter-Fed Tree-Phase A.C. Drive in the Whole Speed Range - Experimental Result", Proc. EPE Conf., 1995, pp.3.399-3.404.
    [61] T. Esparza Sola, H.-J. Chiu, Y.-C. Liu, and A. N. Rahman, “Extending DC Bus Utilization for Induction Motors with Stator Flux Oriented Direct Torque Control,” Energies, vol. 15, no. 1, p. 374, Jan. 2022, doi: 10.3390/en15010374.
    [62] Y. Murai, T. Watanabe, H. Iwasaki, Waveform distortion and correction circuit for PWM inverters with switching lag-times, IEEE Trans. Ind. Appl. IA-23 (5) (Sep./Oct. 1987) 881-886.
    [63] Hu, J.; Wu, B. New integration algorithms for estimating motor flux over a wide speed range. IEEE Trans. Power Electron. 1998, 13, 969–977. https://doi.org/10.1109/63.712323.
    [64] T. Orłowska-Kowalska, "Bezczujnikowe układy napędowe z silnikami indukcyjnymi", Officyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2003.
    [65] Zhang, L. New SVPWM over modulation strategy based on fundamental voltage amplitude linear output control. Proc. CSEE 2005, 25, 12–18.
    [66] Zhang, L. A novel strategy of SVPWM over modulation for piecewise continuous control. J. Electron. Mach. Control 2005, 32, 19–23.
    [67] Z. Xu, D. Liu, X. Zhao and J. Ren, "Over-modulation control strategy of SVPWM review," 2016 Chinese Control and Decision Conference (CCDC), 2016, pp. 3192-3196, doi: 10.1109/CCDC.2016.7531532.
    [68] Z. Li, Y. Guo, K. Huang and X. Zhang, "Synchronized SVPWM algorithm based on superposition principle for the overmodulation region at low switching frequency," 2016 19th International Conference on Electrical Machines and Systems (ICEMS), 2016, pp. 1-6.
    [69] Xiao Tang, Xiangyu Yang and Shiwei Zhao, "Flux analysis of one novel SVPWM overmodulation algorithm and its application in PMSM drive," 2013 International Conference on Electrical Machines and Systems (ICEMS), 2013, pp. 1166-1168, doi: 10.1109/ICEMS.2013.6754413.
    [70] Nho, N.V.; Youn, M.J. Two-mode overmodulation in two-level voltage source inverter using principle control between limit trajectories. Proc. PEDS 2003, 2, 1274–1279.
    [71] Bernardes, T.A.; Pinheiro, H.; Montagner, V.F. Current control system to PMSG in overmodulation region. Proc. Braz. Power Electr. Conf. 2009, 1219–1226.
    [72] Li, S.; Chen, W.; Yan, Y.; Shi, T.; Xia, C. A multimode space vector overmodulation strategy for ultrasparse matrix converter with improved fundamental voltage transfer ratio. IEEE Trans. Power Electron. 2018, 33, 6782–6793.
    [73] Li, S.; Liu, F.; Zhong, Y.; Xing, X.; Lu, J. Improving voltage transfer ratio of matrix converter employing single-mode and two-mode overmodulation technology. Proc. Intell. Comput. Technol. Automat. Conf. 2009, 3, 71–74.
    [74] Holtz, J.; Lotzkat, W.; Khambadkone, A.M. On continuous control of PWM inverters in the overmodulation range including the six-step mode. IEEE Trans. Power Electron. 1993, 8, 546–553.
    [75] Lee, D.-C.; Lee, G.-M. A novel overmodulation technique for space vector PWM inverters. IEEE Trans. Power. Electron. 1998, 13, 1144–1151.
    [76] Dai, Q.; Ge, H.; Li, G. Based on multi-track vector weight matrix converter over-modulation strategy, Elect. Technol. 2011, 26, 100–106.
    [77] Fan, Y.; Qu, W.; Lu, H.; Cheng, X.; Zhang, X.; Wu, L.; Jiang, S. An over modulation strategy based on superposition principle for SVPWM. J. Tsinghua Univ. (Sci. Technol.) 2008, 48, 461–464.
    [78] Zhang, X.; Wang, B.; Yu, Y.; Zhang, J.; Dong, J.; Xu, D. Circular Arc Voltage Trajectory Method for Smooth Transition in Induction Motor Field-Weakening Control. IEEE Trans. Ind. Electron. 2021, 68, 3693–3706. https://doi.org/10.1109/TIE.2020.2988190.
    [79] Kazmierkowski, M.P.; Krishnan, R.; Blaabjerg, F. Control in Power Electronics Selected Problems; Academic Press: Cambridge, MA, USA, 2002.
    [80] Holmes, D.G.; Lipo, T.A. Pulse Width Modulation for Power Converters Principles and Practice. IEEE Ser. Power Eng. 2003.
    [81] Wang, B.; Zhang, X.; Yu, Y.; Zhang, J.; Xu, D. Maximum Torque Analysis and Extension in Six-Step Mode-Combined Field-Weakening Control for Induction Motor Drives. IEEE Trans. Ind. Electron. 2019, 66, 9129–9138. https://doi.org/10.1109/TIE.2018.2889622.
    [82] B. Wu, High-Power Converters and AC Drives. Hoboken, NJ, USA: Wiley, 2007.
    [83] S. Suresh and P. P. Rajeevan, "Virtual Space Vector Based Direct Torque Control Schemes for Induction Motor Drives," 2018 8th IEEE India International Conference on Power Electronics (IICPE), 2018, pp. 1-6, doi: 10.1109/IICPE.2018.8709454.
    [84] D. Casadei, G. Grandi, G. Serra and A. Tani, "Effects of flux and torque hysteresis band amplitude in direct torque control of induction machines," Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics, 1994, pp. 299-304 vol.1, doi: 10.1109/IECON.1994.397792.

    無法下載圖示 全文公開日期 2025/12/07 (校內網路)
    全文公開日期 2062/12/07 (校外網路)
    全文公開日期 2062/12/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE