簡易檢索 / 詳目顯示

研究生: 莊詩韻
Shin-Yun Chuang
論文名稱: 含磷污泥與超音波預處理鋁鹽污泥之共調理脫水
Co-Conditioning and Dewatering of Phosphorus-Rich Biological Sludge and Pre-Ultrasonicated Alum Sludge
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 顧 洋
Young Ku
李篤中
Duu-Jong Lee
黃志彬
Chih-Pin Huang
張維欽
Wei-Chin Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 113
中文關鍵詞: 富磷污泥鋁鹽污泥超音波共調理脫水聚電解質吸附
外文關鍵詞: adsorption, alum sludge, polyelectrolyte, co-conditioning, dewatering, phosphorus-rich biological sludge, ultrasound
相關次數: 點閱:219下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文探討富磷污泥與不同超音波預處理時間之鋁鹽污泥的共調理研究。本實驗利用陽離子性聚電解質對富磷污泥進行單一調理及共調理,以毛細虹吸時間(CST)及過濾比阻(SRF)作為污泥脫水性的評估,並量測界達電位、沉降速率、濁度等性質,了解超音波預處理時間及聚電解質對污泥調理之影響,同時也量測溶解性化學需氧量及溶解性磷之濃度,分別討論鋁鹽污泥之超音波預處理時間對其有機物釋放以及對磷去除效率的影響。隨後利用恆溫吸附實驗,討論各種因素對鋁鹽污泥吸附溶解性磷之影響。

由富磷污泥單一調理可知,陽離子性聚電解質的添加可改善脫水性及沉降性,但對於溶解性磷的移除並無幫助。從共調理結果得知,利用超音波對鋁鹽污泥進行預處理,可提升溶解性磷的去除率,但會釋放出溶解性化學需氧量,因此同時顯示出鋁鹽污泥除磷反應,可用磷酸根與有機物質之交換來描述。另外,超音波預處理時間愈長,愈不利於脫水性及沉降性,添加適量的聚電解質即可有效改善之,其所需最適劑量亦相同。

恆溫吸附實驗中,溶液酸鹼值在偏酸性的情況下,有利於吸附的進行。鋁鹽污泥中所含氫氧化鋁的量也會影響其吸附能力。而Langmuir恆溫吸附模式最適用於本恆溫吸附試驗。


The co-conditioning and dewatering behaviors of phosphorus-rich biological sludge with pre-ultrasonicated alum sludge were investigated in this study. Capillary suction time (CST) and specific resistance to filtration (SRF) were utilized to assess sludge dewaterability. Zeta potential, settling velocity and turbidity were also measured. The soluble chemical oxygen demand (SCOD) and removal efficiency of soluble phosphorus from the sludge were examined to determined effect of ultrasound pretreatment. To evaluate role of alum sludge in phosphorus removal, the adsorption of phosphorus on alum sludge was studied.

In single conditioning, the dewaterability was improved by addition of cationic polyelectrolyte. In co-conditioning, pre-ultrasonicated alum sludge could increase removal efficiency of soluble phosphorus, but caused release of SCOD. Results also showed that phosphorus replaced the organic matters from the surface of alum sludge. However, polyelectrolyte at identical dose could achieve satisfactory dewaterability.

In adsorption experiments, it was found that the adsorptive capacity decreased with increasing pH. The amount of aluminum hydroxide in sludge affected adsorptive capacity. Langmuir adsorption isotherm fit experimental data in this study.

目 錄 摘要…………………………………………………………………………………………………I Abstract…………………………………………………………………………………………II 致謝………………………………………………………………………………………………III 目錄………………………………………………………………………………………………IV 圖目錄……………………………………………………………………………………………VII 表目錄……………………………………………………………………………………………XI 第一章 緒論………………………………………………………………………………………1 第二章 理論基礎與文獻回顧……………………………………………………………………2 2.1. 超音波在污泥處理上的應用………………………………………………………………2 2.2 磷酸鹽去除之基本介紹……………………………………………………………………4 2.2.1 磷的來源及環境影響……………………………………………………………………4 2.2.2 磷酸鹽的去除……………………………………………………………………………4 2.2.3 利用鋁鹽污泥去除磷酸根………………………………………………………………5 2.3 吸附模式……………………………………………………………………………………8 2.3.1 Langmuir 吸附理論……………………………………………………………………8 2.3.2 Freundlich 吸附理論…………………………………………………………………9 2.3.3 Temkin吸附理論………………………………………………………………………10 2.3.4 Dubinin-Radushkevich吸附理論……………………………………………………11 2.4 污泥調理……………………………………………………………………………………13 2.4.1 污泥單一調理…………………………………………………………………………13 2.4.2 污泥之共調理…………………………………………………………………………14 第三章 實驗設備與方法…………………………………………………………………………16 3.1 污泥樣品……………………………………………………………………………………16 3.2 實驗藥品……………………………………………………………………………………19 3.3 實驗設備與裝置……………………………………………………………………………20 3.4 實驗架構及流程……………………………………………………………………………20 3.5 污泥及聚電解質特性分析…………………………………………………………………22 3.5.1 污泥特性分析…………………………………………………………………………22 3.5.2 聚電解質特性分析……………………………………………………………………22 3.6 污泥調理……………………………………………………………………………………23 3.6.1 單一調理………………………………………………………………………………23 3.6.2 共調理…………………………………………………………………………………23 3.7 污泥調理試驗分析…………………………………………………………………………24 3.7.1 毛細虹吸時間試驗……………………………………………………………………24 3.7.2 過濾比阻試驗…………………………………………………………………………25 3.7.3 層沈降試驗……………………………………………………………………………26 3.7.4上層液濁度………………………………………………………………………………26 3.7.5 界達電位量測…………………………………………………………………………27 3.8 溶解性化學需氧量…………………………………………………………………………27 3.9 等溫吸附實驗………………………………………………………………………………28 3.10 鋁鹽污泥中氫氧化鋁測定………………………………………………………………29 3.11 溶解性磷測量……………………………………………………………………………29 第四章 實驗結果與討論…………………………………………………………………………31 4.1 富磷污泥單一調理…………………………………………………………………………31 4.1.1 富磷污泥特性…………………………………………………………………………31 4.1.2 界達電位……………………………………………………………………………… 32 4.1.3 污泥脫水性質…………………………………………………………………………32 4.1.4 層沉降試驗……………………………………………………………………………33 4.1.5 上層液濁度……………………………………………………………………………33 4.1.6 溶解性化學需氧量及溶解性磷濃度…………………………………………………33 4.2 超音波預處理之鋁鹽污泥…………………………………………………………………41 4.2.1 氫氧化鋁含量及比表面積……………………………………………………………41 4.2.2 粒徑分佈………………………………………………………………………………42 4.2.3 表面型態………………………………………………………………………………42 4.3 富磷污泥與鋁鹽污泥共調理………………………………………………………………49 4.3.1 富磷污泥與鋁鹽污泥不同比例混合之實驗結果……………………………………49 4.3.1.1 混合污泥之界達電位……………………………………………………………50 4.3.1.2 混合污泥之脫水性…………………………………………………………………51 4.3.1.3 混合污泥之層沉降試驗……………………………………………………………51 4.3.1.4 混合污泥之上層液濁度……………………………………………………………52 4.3.1.5 混合污泥之溶解性化學需氧量去除結果…………………………………………52 4.3.1.6 混合污泥之溶解性磷去除結果……………………………………………………53 4.3.2富磷污泥與鋁鹽污泥以1:1比例混合加藥共調理之實驗結 果…………………………………………………………………………………………62 4.3.2.1 污泥共調理之界達電位……………………………………………………………63 4.3.2.2 污泥共調理之脫水性質……………………………………………………………63 4.3.2.3 污泥共調理之沉降試驗……………………………………………………………65 4.3.2.4 污泥共調理之上層液濁度…………………………………………………………65 4.3.2.5 污泥共調理之化學需氧量及溶解性磷去除結果…………………………………66 4.3.3富磷污泥與鋁鹽污泥以4:1比例混合加藥共調理之實驗結 果…………………………………………………………………………………………74 4.3.3.1 污泥共調理之脫水性質……………………………………………………………75 4.3.3.2 污泥共調理之化學需氧量及溶解性磷去除結果…………………………………75 4.4 恆溫吸附實驗………………………………………………………………………………83 4.4.1 酸鹼值效應……………………………………………………………………………83 4.4.2 吸附劑種類效應………………………………………………………………………84 第五章 結論………………………………………………………………………………………91 參考文獻…………………………………………………………………………………………93 附錄 A……………………………………………………………………………………………103 A.1 恆溫吸附公式之回歸-酸鹼值效應……………………………………………………103 A.2 恆溫吸附公式之回歸-吸附劑種類……………………………………………………109 作者簡介………………………………………………………………………………………113 圖 目 錄 圖2-1 共調理於低壓及高壓下調理機制圖……………………………………………………15 圖3-1 SBR模廠示意圖……………………………………………………………………………17 圖3-2 鋁鹽污泥與富磷污泥共調理實驗之流程圖……………………………………………21 圖3-3 毛細虹吸時間測試裝置…………………………………………………………………24 圖3-4 過濾比阻裝置……………………………………………………………………………26 圖 4-1 富磷污泥單一調理之界達電位與調理劑量關係………………………………………35 圖 4-2 富磷污泥單一調理之CST、SRF與調理劑量關係………………………………………36 圖 4-3 富磷污泥單一調理之沉降速率與調理劑量關係………………………………………37 圖 4-4 富磷污泥單一調理之上層液濁度與調理劑量關係……………………………………38 圖 4-5 富磷污泥單一調理之溶解性化學需氧量與調理劑量關係……………………………39 圖 4-6 富磷污泥單一調理之溶解性磷濃度與調理劑量關係…………………………………40 圖 4-7 2007年1月之鋁鹽污泥經由超音波處理後之粒徑分佈………………………………43 圖 4-8 2007年3月之鋁鹽污泥經由超音波處理後之粒徑分佈………………………………44 圖4-9 2007年1月之鋁鹽污泥經由不同超音波時間處理之SEM 圖…………………………………………………………………………………………45 圖4-10 2007年3月之之鋁鹽污泥經由不同超音波時間處理之SEM 圖…………………………………………………………………………………………46 圖4-11 2007年1月之鋁鹽污泥經由不同超音波時間處理之 EDX………………………………………………………………………………………47 圖4-12 2007年3月之鋁鹽污泥經由不同超音波時間處理之 EDX………………………………………………………………………………………48 圖 4-13 富磷污泥、2007年1月份不同超音波處理時間之鋁鹽污泥及 混合後污泥之界達電位…………………………………………………………………55 圖 4-14 富磷污泥、2007年1月份不同超音波處理時間之鋁鹽污泥及 混合後污泥之CST………………………………………………………………………56 圖 4-15 富磷污泥、2007年1月份不同超音波處理時間之鋁鹽污泥及 混合後污泥之SRF………………………………………………………………………57 圖 4-16 富磷污泥、2007年1月份不同超音波處理時間之鋁鹽污泥及 混合後污泥之沉降試驗…………………………………………………………………58 圖 4-17 富磷污泥、2007年1月份不同超音波處理時間之鋁鹽污泥及 混合後污泥之上層液濁度………………………………………………………………59 圖 4-18 富磷污泥、2007年1月份不同超音波處理時間之鋁鹽污泥及 混合後污泥之溶解性化學需氧量去除率………………………………………………60 圖 4-19 富磷污泥、2007年1月份不同超音波處理時間之鋁鹽污泥及 混合後污泥之溶解性磷去除率…………………………………………………………61 圖 4-20 富磷污泥與2007年3月份不同超音波預處理時間之鋁鹽 污泥進行共調理之界達電位與聚電解質劑量關係 (富磷污泥:鋁鹽污泥= 1:1)…………………………………………………………67 圖 4-21 富磷污泥與2007年3月份不同超音波預處理時間之鋁鹽 污泥進行共調理之CST與聚電解質劑量關係 (富磷污泥:鋁鹽污泥= 1:1) ………………………………………………………68 圖 4-22 富磷污泥與2007年3月份不同超音波預處理時間之鋁鹽 污泥進行共調理之SRF與聚電解質劑量關係 (富磷污泥:鋁鹽污泥= 1:1)…………………………………………………………69 圖 4-23 富磷污泥與2007年3月份不同超音波預處理時間之鋁鹽 污泥進行共調理之沉降試驗與聚電解質劑量關係 (富磷污泥:鋁鹽污泥= 1:1)…………………………………………………………70 圖 4-24 富磷污泥與2007年3月份不同超音波預處理時間之鋁鹽 污泥進行共調理之上層液濁度與聚電解質劑量關係 (富磷污泥:鋁鹽污泥= 1:1)…………………………………………………………71 圖 4-25 富磷污泥與2007年3月份不同超音波預處理時間之鋁鹽 污泥進行共調理之溶解性化學需氧量與聚電解質劑量關係 (富磷污泥:鋁鹽污泥= 1:1)…………………………………………………………72 圖 4-26 富磷污泥與2007年3月份不同超音波預處理時間之鋁鹽 污泥進行共調理之溶解性磷移除率與聚電解質劑量關係 (富磷污泥:鋁鹽污泥= 1:1)…………………………………………………………73 圖 4-27富磷污泥與2007年3月份不同超音波預處理時間之鋁鹽 污泥進行共調理之CST與聚電解質劑量關係 (富磷污泥:鋁鹽污泥= 4:1)…………………………………………………………77 圖 4-28富磷污泥與2007年3月份不同超音波預處理時間之鋁鹽 污泥進行共調理之SRF與聚電解質劑量關係 (富磷污泥:鋁鹽污泥= 4:1)…………………………………………………………78 圖 4-29 富磷污泥與2007年3月份不同超音波預處理時間之鋁鹽 污泥進行共調理之溶解性化學需氧量與聚電解質劑量關係 (富磷污泥:鋁鹽污泥= 4:1)…………………………………………………………79 圖 4-30 富磷污泥與2007年3月份不同超音波預處理時間之鋁鹽 污泥進行共調理之溶解性磷移除率與聚電解質劑量關係 (富磷污泥:鋁鹽污泥= 4:1)…………………………………………………………80 圖4-31 固定溫度25℃,不同酸鹼值之吸附平衡濃度與吸附容量之關 係…………………………………………………………………………………………86 圖4-32 固定溫度25℃、pH = 6.5+0.1,改變吸附劑之吸附平衡濃 度與吸附容量之關係……………………………………………………………………………88 圖 A-1 pH = 5.0±0.1,Langmuir恆溫吸附公式之回歸……………………………………103 圖 A-2 pH = 5.0±0.1,Freundlich恆溫吸附公式之回歸…………………………………103 圖 A-3 pH = 5.0±0.1,Temkin恆溫吸附公式之回歸………………………………………104 圖 A-4 pH = 5.0±0.1,Dubinin-Radushevich恆溫吸附公式之回 歸………………………………………………………………………………………104 圖 A-5 pH = 6.2±0.1,Langmuir恆溫吸附公式之回歸……………………………………105 圖 A-6 pH = 6.2±0.1,Freundlich恆溫吸附公式之回歸…………………………………105 圖 A-7 pH = 6.2±0.1,Temkin恆溫吸附公式之回歸………………………………………106 圖 A-8 pH = 6.2±0.1,Dubinin-Radushevich恆溫吸附公式之回 歸………………………………………………………………………………………106 圖 A-9 pH = 8.2±0.2,Langmuir恆溫吸附公式之回歸……………………………………107 圖 A-10 pH = 8.2±0.2,Freundlich恆溫吸附公式之回歸………………………………107 圖 A-11 pH = 8.2±0.2,Temkin恆溫吸附公式之回歸……………………………………108 圖 A-12 pH = 8.2±0.2,Dubinin-Radushevich恆溫吸附公式之回 歸……………………………………………………………………………………108 圖 A-13 pH = 6.5±0.1,2007年1月公館鋁鹽污泥之Langmuir 恆溫吸附公式回歸…………………………………………………………………109 圖 A-14 pH = 6.5±0.1,2007年1月公館鋁鹽污泥之Freundlich 恆溫吸附公式回歸…………………………………………………………………109 圖 A-15 pH = 6.5±0.1,2007年1月公館鋁鹽污泥之Temkin 恆溫吸附公式回歸…………………………………………………………………110 圖 A-16 pH = 6.5±0.1,2007 年 1 月公館鋁鹽污泥之 Dubinin-Radushkevich恆溫吸附公式回歸……………………………………………………110 圖 A-17 pH = 6.5±0.1,2007年3月公館鋁鹽污泥之Langmuir 恆溫吸附公式回歸…………………………………………………………………111 圖 A-18 pH = 6.5±0.1,2007年3月公館鋁鹽污泥之Freundlich 恆溫吸附公式回歸…………………………………………………………………111 圖 A-19 pH = 6.5±0.1,2007年3月公館鋁鹽污泥之Temkin 恆溫吸附公式回歸…………………………………………………………………112 圖 A-20 pH = 6.5±0.1,2007年 3 月公館鋁鹽污泥之 Dubinin-Radushkevich恆溫吸附公式回歸……………………………………………………112 表 目 錄 表 2-1 吸附劑之溶解性磷吸附容量……………………………………………………………11 表 3-1 人工合成污水之主要水質………………………………………………………………22 表 3-2 人工合成廢水主要成份…………………………………………………………………22 表 4-1 富磷污泥基本性質分析.………………………………………………………………35 表 4-2 超音波預處理鋁鹽污泥之氫氧化鋁含量及比表面積…………………………………45 表 4-3 富磷污泥、2007年1月份鋁鹽污泥及不同比例的混合污泥基 本性質……………………………………………………………………………………54 表 4-4 富磷污泥、2007年3月鋁鹽污泥及1:1混合污泥之基本性 質…………………………………………………………………………………………66 表 4-5 富磷污泥、2007年3月份鋁鹽污泥及4:1混合污泥之基本性 質…………………………………………………………………………………………79 表 4-6 鋁鹽污泥與富磷污泥混合前後溶解性磷變化、 去除率及吸附 容量………………………………………………………………………………………86 表4-7 不同酸鹼値之Langmuir、Freundlich、Temkin及 Dubinin-Radushkevich恆溫吸附模式之參數………………………………………92 表4-8 不同吸附劑之Langmuir、Freundlich、Temkin及 Dubinin-Radushkevich恆溫吸附模式之參數………………………………………94 表4-9 共調理及恆溫吸附實驗之吸附容量比較………………………………………………95

黃昭貴,「含磷污泥與鋁鹽污泥之共調理脫水」,碩士論文,國立台灣科技大學化學工程系,台北 (2005)。

APHA, “Standard methods for the examination of water and wastewater”, 19th edn. American Public Health Association, Washington D.C. (1995).

Bache, D. H. and Papavasilopoulos E. N., “Viscous behavior of sludge centrate in response to polymer conditioning”. Water Research., Vol.34, No.1, pp.354-358 (2000).

Bache, D. H. and Zhao, Y. Q., “Optimising polymer use in alum sludge conditioning: an ad hoc test”. Water Supply, Vol.50, No.1, pp.29-38 (2001).

Bien, J. B., Kempa, E. S. and Bien, J. D., “Influence of ultrasonic field on structure and parameters of sewage sludge for dewatering process”, Water Science and Technology, Vol.36, No.4, pp.287-291 (1997).

Bohm, N. and Kulicke, W. M., “Optimization of the use of polyelectrolytes for dewatering industrial sludge of various origins”, Colloid and Polymer Science, Vol.275, No.1, pp.73-81 (1997).

Boungrier, C., Carrere, H. and Delgenes, J. P., “Solubilisation of waste-activated sludge by ultrasonic treatment”, Chemical Engineering Journal, Vol.106, No.2, pp.163-169 (2005).

Chang, G. R., Liu, J. C. and Lee, D. J., “Co-conditioning and dewatering of chemical sludge and waste activated sludge”, Water Research, Vol.35, No.3, pp.786-794 (2001).

Chen, G. W., Chang, I. L., Hung, W. T. and Lee, D. J., “Regimes for zone settling of waste activated sludges”. Water Research, Vol.30, No.8, pp.1844-1850 (1996).

Chen, S. H., Liu, J. C. and Cheng, G. H., “Chang, W.C., “Conditioning and dewatering of phosphorus-rich biological sludge”, Drying Technology, Vol.24, No.10, pp.1217-1223 (2006).

Chen, Y., Yang, H. and Gu, G., “Effect of acid and surfactant treatment on activated sludge dewatering and settling”, Water Research, Vol.35, No.11, pp.2615-2620 (2001).

Chitikela, S. and Dentel, S., “Dual chemical conditioning and dewatering of anaerobically digested biosolids: laboratory evaluations”. Water Environment Research, Vol.70, No.5, pp.1062-1069 (1998).

Chiu, Y. C., Chang, C. N. and Lin, J. G., “Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion”, Water Science and Technology, Vol.36, No.11, pp.155-162 (1997).

Christensen, J. R., Sorensen, P. B., Christensen, G. L., and Hansen, J. A., “Mechanisms for overdosing in sludge conditioning”, Journal of Environmental Engineering, Vol.119, No.1, pp.159-171 (1993).

Chu, C. P. and Lee, D. J., “Sludge management (II): sludge pretreatment”, Bulletin of the college of engineering, N.T.U., June, No.82, pp.49-76 (2001).

Chu, C. P. , Chang, B. V., Liao, G. S., Jean, D. S. and Lee, D. J., “Observations on changes in ultrasonically treated waste-activated sludge”, Water Research, Vol.35, No.4, pp.1038–1046 (2001).

Erdincler, A. and Vesilind, P. A., “Effect of sludge cell disruption on compactibility of biological sludges”, Water Science and Technology, Vol.42, No.9, pp.119-126 (2000).

Galarneau, E. and Gehr, R., “Phosphorus removal from wastewaters : experimental and theoretical support for alternative mechanisms”, Water Research, Vol.31, No.2, pp.328-338 (1997).

Gates, D. D., Luedecke, C., Hermanowicz, S. W. and Jenkins, D., “Mechanism of chemical phosphorus removal in activated sludge with Al (III) and Fe (III)”, National Conference on Environmental Engineering, Arlington-Virginia, July, pp.332-329 (1990).

Gea, T., Artola, A. and Sanchez, A., “Composting of de-inking sludge from the recycled paper manufacturing industry”, Bioresoure Technology, Vol.96, No.10, pp.1161-1167 (2005).

Georgantas, D. A. and Grigoropoulou, H. P., “Phosphorus removal from synthetic and municipal wastewater using spent alum sludge”, Water Science and Technology, Vol.52, No.10-11, pp.525-532 (2005).

Giesler, R., Andersson, T., Lovqren, L. and Persson, P., “Phosphate sorption in aluminum- and iron-rich humus soils”, Soil Science Society of America Journal, Vol. 69, No. 1, pp. 77-86 (2005).

Gonze, E., Pillot, S., Valette, E., Gonthier, Y. and Bernis, A., “Ultrasonic treatment of an aerobic activated sludge in a batch reactor”, Chemical Engineering and Chemical Processing, Vol.42, No.12, pp.965-975 (2003).

Guan, X. H., Chen, G. H. and Shang, C., “Re-use of water treatment works sludge to enhance particulate pollutant removal from sewage”, Water Research, Vol.39, No.15, pp.3433-3440 (2005).

Guisasola, A., Pijuan, M., Baeza, J. A., Carrera, J., Casas, C. and Lafuente, J., “Aerobic phosphorus release linked to acetate uptake in bio-P sludge:process modeling using oxygen uptake rate”, Biotechnology and Bioengineering, Vol.85, No.7, pp.722-233 (2004).

Helmy, A. K., Ferreiro, E. A. and De Bussetti, S. G., “Energy, enthalpy, and isosteric heat of adsorption of phosphate on hydrous Al oxide”, Journal of Colloid and Interface Science, Vol.183, No.1, pp.131-134 (1996).

Hu, S. H., Wu, J. Y., Yen, F. S. and Tsai, M. S., “Alkaline leaching of printed circuit board sludge”, Environment progress, Vol.25, No.3, pp.243-250 (2006).

Kang, S. K., Choo, K. H. and Lim, K. H., “Use of Iron oxide particles as adsorbent to enhance phosphorus removal from secondary wastewater effluent”, Separation Science and Technology, Vol.38, No.15, pp.3853-3874 (2003).

Keiding, K. and Nielsen, P. H., “Desorption of organic macromolecules from activated sludge: effect of ionic composition”, Water Research, Vol.31, No.7, pp.1665–1672 (1997).

Kim, J. S., Kim, J. H., Moon, H., Chon, C. and Ahn, J. S., “Removal capacity of water plant alum sludge for phosphorus in aqueous solution”, Chemical Speciation and Bioavailability, Vol.14, pp.67-73 (2003).

Knocke, W. R., Nash, J. W. and Randall, C. W., “Conditioning and dewatering of anaerobically designed BPR sludge”, Journal of Environmental Engineering, Vol.118, No.5, pp.642-656 (1992).

Kostantinos, K., Maximos, P. and Georgios N. A., “Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent”, Journal of Hazardous Materials, Vol.139, No.3, pp.447-452 (2007).

Lai, J. Y. and Liu, J. C., “Co-conditioning and dewatering of alum sludge and waste activated sludge”, Water Science and Technology, Vol.50, No.9, pp.41-48 (2004).

Liu, Y. H., “Relation between sludge chabohydrate content and biological phosphate removal”, Water Research, Vol.32, No.5, pp.1635-1641 (1998).

De-Bashan, L. E. and Bashan, Y., “Recent advances in removing phosphorus from wastewater and its future use as fertilizer(1997-2003)”, Water Research, Vol.38, No.19, pp.4222-4246 (2004).

Mahmut O., “Equilibrium and Kinetic Modeling of adsorption of Phosphorus on Calcined Alunite”, Adsorption, Vol.9, No.2, pp.125-132 (2003).

Mao, T., Hong, S. Y., Show, K. Y, Tay, J. H. and Lee, D. J., “A comparison of ultrasound treatment on primary and secondary sludges", Water Science and Technololgy, Vol.50, No.9, pp.91-97 (2004).

Mikkelsen, L. H. and Keiding, K., “Physico-chemical characteristics of full scale sewage sludges with implications to dewatering”, Water Research, Vol.36, No.10, pp.2451-2462 (2002).

Na, S., Kim, Y. U. and Khim, J., “Physiochemical properties of digested sewage sludge with ultrasonic treatment”, Ultrasonics Sonochemistry, Vol.14, No.3, pp.281-285 (2007).

Namasivayam, C. and Sangeetha, D., “Equilibrium and kinetic studies of adsorption of pgosphate onto ZnCl2 activated coir pith carbon”, Journal of Colloid and Interface Science, Vol.280, No.2, pp.359-365 (2004).

Novak, J. T., Agerbak, M. L., Sorensen, B. L., and Hansen, J. A., “Conditioning, filtering, and expressing waste activated sludge”. Journal of Environmental Engineering, Vol.125, No.9, pp.816-824 (1999).

Novak, J. T., Goodman, G. L., Pariroo, A., and Huang, J. C., “The blinding of sludges during filtration”, Journal Water Pollution Control Federation., Vol.60, No.2, pp.206-214 (1988).

Pitman, A. R., Deacon, S. L. and Alexander, W. V., “The thickening and treatment of sewage sludge to minimize phosphorus release”, Water Research, Vol.25, No.10, pp.1285-1294 (1991).

Popel, H. J. and Jardin, N., “Influence of enhanced biological phosphorus removal on sludge treatment”, Water Science and Technology, Vol.28, No.1, pp.263-271 (1993).

Power, “Chemical phosphorus removal from municipal wastewater by the addition of waste alum sludge to the activated sludge system”, Research Report W66, University of cape town (1992).

Rui, A. R. Boaventura, António, A. S. Duarte and Manuel, F. Almeida, “Aluminum recovery from water treatment sludges”, International Conference on Water Supply and Water Quality, Cracovia, September, pp.11-13 (2000).

Rydin, E., “Experimental studies simulating potential phosphorus release from municipal sewage sludge deposits”, Water Research, Vol.30, No.7, pp.1695-1701 (1996).

Saito, T., Brdjanovic, D. and Van Loosdrecht, M. C. M., “Effect of nitrite on phosphate uptake by phosphate accumulating organisms”, Water Research, Vol.38, No.17, pp.3760-3768 (2004).

Sarabia, E. R. F. de, Gallego-Juarez, J. A., Rodriguez-Corral, G., Elvira-Segura, L. and Gonzalez-Gomez, I., “Application of high-power ultrasound to enhance fluid/solid particle separation processes”, Ultrasonics, Vol.38, No.1-8, pp.642-646 (2000).

Schlafer, O., Onyeche, T., Bormann, H., Schlafer, C. and Sievers, M., “Ultrasound stimulation of micro-organisms for enhanced biodegradation”, Ultrasonics, Vol.40, No1-8, pp.25-29 (2002).

Somasundaran, P. and Krishnakumar, S., “Adsorption of surfactant and polymer at the solid-liquid interface”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.123-124, pp.491-513 (1997).

Somasundaran, P. and Yu, X. “Flocculation/dispersion of suspensions by controlling adsorption and conformation of polymers and surfactants”. Advances in Colloid Interface Science, Vol.53, pp.33-49 (1994).

Spinosa, L. and Vesilind, P. A. “Sludge into Biosolids: Processing, Disposal and Utilization”. IWA Publishing UK (2001).

Thomas, P. R., Allen, D. A. and McGregor, D. L., “Evaluation of chemical and Biological nutrient removal”, Water Science and Technology, Vol.34, No.1-2, pp.285-292 (1996).

Tiehm, A., Nikel, K. and Nies, U., “The use of ultrasound to accelerate the anaerobic digestion of sewage sludge”, Water Science and Technology, Vol.36, No.11, pp.121–128 (1997).

Tiehm, A., Nickel, K., Zellhorn, M. and Neis, U., “Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization”, Water Research, Vol.35, No.8, pp.2003-2009 (2001).

Vaxelaire, J. and Cezac, P., “Moisture distribution in activated sludges: a review”, Water Research, Vol.38, No.9, pp.2214-2229 (2004).

Wu, C. C., Huang, C. and Lee, D. J., “Effects of polymer dosage on alum sludge dewatering characteristics and physical properties”. Colloids Surfaces A: Physicochemical and engineering Aspects, Vol.122, No.1-3, pp.89-96 (1997).

Xuan, Y., Pingfang, H., Xiaoping, L. and Yanru, W., “A review on the dewaterability of bio-sludge and ultrasound pretreatment”, Ultrasonics, Vol.11, No.6, pp.337-348 (2004).

Yang, Y., Zhao, Y. Q., Babatunde, A. O., Wang, L., Ren, Y. X. and Han, Y., “Characteristics and mechanisms of phosphate adsorption on dewatered alum sludge”, Separation and Purification Technology, Vol.51, No.2, pp.193-200 (2006).

Yang, Y., Tomlinson, D., Kennedy, S. and Zhao, Y. Q., “Dewatered alum sludge: a potential adsorbent for phosphorus removal”, Water Science and Technology, Vol.54, No.5, pp.207-213 (2006).

Young, U. K. and Byoung, I. K., “Effect of ultrasound on dewaterability of sewage sludge”, The Japan Society of Applied Physics, Vol.42, No.9, pp.5898-5899 (2003).

Yu, X. and Somasundaran, P., “Enhanced flocculation with double flocculants”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.81, pp.17-23 (1993).

Zeng, L., Li, X. and Liu, J., “Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings”, Water Research, Vol.38, No.5, pp.1318-1326 (2004).

Zhao, Y. Q., “Enhancement of alum sludge dewatering capacity by using gypsum as skeleton builder”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.211, No.2-3, pp.205-212 (2002).

Zhao, Y. Q., “Settling behaviour of polymer flocculated water-treatment sludge I:analyses of settling curves”, Separation and Purification Technology, Vol.35, No.1, pp.71-80 (2004).

Zhao, Y. Q., Papavasilopoulos, E. N., and Bache, D. H., “Clogging of filter medium by excess polymer during alum sludge filtration”, Filtration and Separation, Vol.35, No.10, pp.947-950 (1998).

Zhou, A., Tang, H. and Wang, D., “Phosphorus adsorption on natural sediments:modeling and effect of pH and sediment composition”, Water Research, Vol.39, No.7, pp.1245-1254 (2005).

無法下載圖示 全文公開日期 2012/07/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE